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Executive Summary

Chad is consistently rated among the most vulnerable countries in the world to climate change.
Increasing temperatures and precipitation are raising the threat of drought, flood, heatwaves, and
vector-borne diseases. Infrastructure challenges and Chad’s young, poor, and growing population
make it especially vulnerable to these threats. The threat from floods in particular is becoming
increasingly salient in Chad due to a series of devastating floods in recent years, notably in 2012,
2022, and 2024. This report analyzes information on flood risk in Chad together with multiple
sources of data on flooding incidence over the past 10-15 years to evaluate current and projected
exposure to flooding and identify areas at particular risk, in order to inform planning around the

World Bank’s social protection programs in the country.
Flood hazard and exposure in Chad

Large parts of Chad face high and increasing risk from floods, caused by periods of heavy concen-
trated rainfall and exacerbated by population growth in flood-prone zones, land degradation, and
poor drainage and water management infrastructure. We analyze flood hazard—estimated depths
of floods with a probability of occurring once every 100 years—and flood exposure—a measure of
land area or population at risk from a certain level of flood hazard—using data from the Fathom

flood risk database, a recent study by Rogers et al. (2025), and selected additional sources.

The main driver of flooding hazard in Chad is fluvial (or riverine) flooding as heavy precipitation
flows into river networks and lakes, increasing water levels and inundating nearby areas. Extreme
rainfall may also cause pluvial flooding if water cannot be absorbed or drain towards rivers fast
enough, as well as direct damage not associated with inundation. According to data from Fathom,
a global leader in flood hazard mapping, just 4% of Chad’s land area is estimated to be at risk
from fluvial floods compared to 18% for pluvial floods. However, the median inundation depth of
a pluvial flood with a 100-year return period (expected to occur once every 100 years on average)
is less than 10 cm compared to 45 cm for a fluvial flood. A map of the hazard from 100-year floods
shows how the greatest inundation depths are concentrated in the areas near to Chad’s rivers,

including seasonal wadis.

Rural communities are vulnerable to flood damages due to their reliance on rain-fed agriculture
and often less durable dwelling materials, but the greatest population exposure to flood risk is in
urban areas which are typically in proximity to lakes and rivers. The higher flooding hazard in
these areas is compounded by the the spread of informal settlements—especially in N’'Djamena—
which have often expanded into low-lying, flood-prone zones. Poorly maintained or non-existent
drainage systems are often unable to deal with heavy precipitation or rising river flows, leading
to chronic flooding, housing destruction, and widespread water stagnation. The area around and
between the Logone and Chari rivers stands out as combining both high flood hazard and high
population exposure. Maps of population density in areas with 100-year flood depths of at least 10



or 100 cm show clearly that although flood hazard is widespread in Chad, population exposure is

concentrated primarily in particular departements, mainly in the west and south of Chad.

Climate change is projected to increase flood hazard, making floods of a given severity or inundation
depth more common across much of the country, but in general the estimated increases in 100-year
flood depths are not large. According to Fathom projections for conditions in 2050 under the SSP1-
2.6 climate change scenario, the share of pixels exposed to fluvial floods will increase from 4.1% to
4.4%, and the median depth of 100-year floods will increase from slightly under to slightly over 45
cm. Results are similar under the less optimistic SSP2-4.5 scenario. Increasing fluvial flood hazard
in recent decades is reflected in data from the Chad Direction des Ressources en Eau (DRE) on
river flows through hydrological stations. Average river levels have been increasing over time and
particularly in the flooding season from July through November, despite flat or slightly decreasing

trends in total precipitation since the 1950s.

Despite limited increases in flood hazard, flood exposure in Chad will increase because Chad’s
population is expected to at least double between 2017 and 2050. Rogers et al. (2025) analyze
the relative contribution of changes in flood hazard and population to determining future flood
exposure, and find that 77% of predicted changes in exposure by 2100 globally are due to population
growth, compared to 21% due to climate change (and 2% to a combination of the two). The study
finds that the area exposed to combined fluvial and pluvial 100-year floods of at least 10 cm will only
increases from 17.9% to 18.9% of Chad’s land area by 2050 under the SSP2-4.5 scenario, but that
the population exposed to such a flood risk is projected to increase from 4.2 to 9.9 million people.
Most of the increased exposure will occur in the same departements with the highest current levels

of population exposure.
Incidence of flooding since 2012

Major flood disasters in Chad were infrequent historically but have occurred in a majority of
recent years, in line with concerns about increasing flood hazard due to climate change and rising
populations in high-risk areas. The increasing concentration of precipitation is reflected in data on
river flows through hydrological stations, which have been increasing over time, particularly during
the flooding season from July through November. Floods are also increasing in duration and are
occurring earlier in the year, a consequence of more erratic and concentrated precipitation. Millions
of people were affected by the worst floods in Chad’s history in 2012, 2022, and 2024 which affected
most provinces of Chad, with more spatially concentrated floods occurring in many other years
since 2010.

An analysis of survey and satellite data allows greater insight on the specific areas affected by
floods than media or government reports which often aggregate information to the province or
country level or focus on a subset of specific locations. All sources agree on the years with the most

severe flood disasters. For example, 47% of households covering 86% of rural communities in the
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2024 ENSA survey reported experiencing a flood shock over the previous six months, compared to
just 5% of households the previous year. Data from the NOAA/George Mason University VIIRS
Flood Mapping (VEM) archive, which uses VIIRS daily satellite imagery to identify changes in the
presence of surface water, detects flooding in 6.3% of Chad’s land area in 2024, by far the highest
level since tracking began in 2012. The mean count of days with flooding detected for flooded pixels
in 2024 was 33 days, compared to less than 20 days in most years, and the 75th percentile was 43

days compared to less than 30 in all other years.

Both data sources also show that flooding is quite common even outside years of major floods that
have been the subject of major media attention. The VFM archive shows that at least 2% of land
pixels have some flooding detected in every year, though some portion of this may represent seasonal
water fluctuations not fully captured in the VFM algorithm. Three percent of households in the
ENSA surveys from 2016-2018 reported experiencing a flood shock each year on average and 10%
of households in the 2018-19 ECOSIT surveys reported at least one flood shock from 2015-2018,
though no major flood events occurred in this period. These events are generally concentrated in
areas with high flooding hazard, implying a potential need for more flood monitoring in these areas

to respond to isolated flood shocks.

There is substantial variation in flood exposure across households within communities. The major-
ity of households in communities with at least one household flood report in a given period do not
report experiencing any flooding shock. Households engaged in agricultural production or having
dwellings made of less durable materials are more likely to report a flood shock, highlighting how

differences in vulnerability can determine who is affected by flooding as opposed to simply exposed.

Household surveys are useful for understanding who is being affected by floods, but they are limited
in their spatial and temporal coverage and may also conflate inundation shocks with shocks related
to heavy precipitation that does not lead to inundation. For the same reason, deviations in local
precipitation from historical averages can only roughly proxy for flood incidence. River flow data
serve as validated indicators of fluvial flood hazard but cannot measure inundation beyond the river
and are only available at a small number of locations. Remote sensing, and particularly satellite
imagery, radar, and microwave data, now enables flood detection at a granular temporal and spatial
level. Satellite-based measures remain constrained by measurement issues (cloud cover for optical
imagery, long revisit periods for radar, challenges with water detected in urban, forest, and arid
areas) and are subject to flood detection algorithm decisions, such as how to account for seasonal
water fluctuations. For these reasons, satellite-based sources should not be considered definitive
measures of flood incidence, particularly at very specific points in time and space. At a more
aggregate level, however, they are very useful in identifying and monitoring areas where floods are

likely occurring.

Several publicly-available databases monitor near-real time (NRT) flooding worldwide using differ-

ent data inputs and algorithms. The results from these databases could be combined for real-time
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monitoring of flooding in Chad to inform disaster response. For example, the World Food Pro-
gramme in Chad has used data from the Automated Disaster Analysis and Mapping (ADAM) floods
database, which uses an algorithm combining satellite imagery from VIIRS and MODIS, satellite
synthetic aperture radar from Sentinel-1, and FloodScan data, to map out flooding incidence during
the major floods in 2022 and 2024.

We analyze historical remotely-sensed flooding incidence using data from the NOAA /George Mason
University VIIRS Flood Mapping (VFM) product, based on daily VIIRS satellite imagery from
2012-2024. Flooding is detected in the VFM archive in at least one year from 2012-2024 for 10% of
all land pixels in Chad. The highest levels of mean annual flood exposure—measured as the number
of days flooding is detected in each pixel—are in the areas identified in the Fathom data as having
greater fluvial flood hazard. Around Lakes Chad, Fitri, and Iro, between the Chari and Logone
rivers near northern Cameroon, and further south along the Logone river, many pixels experience
an average of over 100 days of detected floods annually from 2012-2024. Outside of these areas
it is rare for the mean annual days of detected flooding to exceed 40. This is consistent with a
greater threat from fluvial floods but could also reflect the fact that VIIRS satellite imagery cannot
see through clouds and is therefore constrained in detecting pluvial floods, though it does detect
floods in the northern half of Chad that may reflect pluvial floods. The Sentinel-1 satellite captures
synthetic aperture radar data which can see through clouds, but visits each point on earth much

less frequently than the VIIRS satellite and so will miss many short duration floods.

We combine the mean annual days of flooding data from the VFM archive with data on population
density from WorldPop to highlight the populated areas with the highest recurring flood incidence.
These areas closely mirror the populated areas exposed to 100-year flood depths of at least 10 ¢cm
according to Fathom. In particular, the highest levels of population exposure to detected flooding
in Chad are primarily concentrated in the area around the Logone River, though many other

populated areas also have high recurring flood incidence.

Comparing estimated national annual population flood exposure to reports of affected populations,
we find that in years where affected populations are reported this represents 29% of the estimated
exposed population. In years of major flood disasters such as 2012, 2020, and 2024, this share
increases to 48%. This comparison shows that floods do not affect everyone equally, in line with
the survey analysis of correlates of flood shock reports. The larger share of the population affected
by more severe floods may represent broader indirect effects of these floods, in addition to direct

effects of flooding.

An important question is how well the remotely-sensed flood detection reflects flooding experiences
on the ground. At the community level, there is a strong relationship between the amount of flood-
ing detected in pixels around a community’s location in the VFM archive data and the probability
that any survey household in the community reports a flood shock in the same time period in both
the ECOSIT and ENSA surveys. The ECOSIT surveys show evidence of recency bias in household
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survey recall, with more recent detected floods more predictive of flood reports over the 3 year recall
periods. Floods detected within 1 km radius of a community are also more strongly predictive of
survey reports than floods within a 5 km radius. In the ENSA surveys recency bias is less of a
concern because of the 6 month recall period, but flood reports are indeed predicted by flooding
detected in the same period and not prior years. The association between detected flooding and

the probability of any flood report is similar when considering both a 1 and 5 km radius.

Although both survey flood reports and satellite-based flood detection using the VFM archive
are concentrated relatively more in areas with higher flood hazard and in years of major flooding
disasters and the two measures are correlated at the community level, the sources also can identify
different sets of communities as exposed to flooding. In both the ECOSIT and ENSA surveys,
many communities with a large share of pixels flooded within 1 km do not have any household
flood reports, while many communities with a household flood report do not have any flooded
pixels detected even within 5 km. These differences can be attributed to both limitations of
remotely-sensed measures—challenges in capturing pluvial, short duration, and urban floods in
particular—and heavy precipitation shocks that do not result in inundation but cause damages
reported in surveys as floods due to a lack of more specific shock categories. Part of the former
challenge could potentially be addressed with more sophisticated remotely-sensed flood detection
techniques, but the latter challenge suggests there will always be disagreement between survey and

satellite flood measures.

Despite these differences, the results suggest that satellite-based flood detection can identify a
subset of flooded communities with quite high accuracy. Indeed, 84% of ENSA communities and
64% of ECOSIT 4 communities with at least 10% of pixels within 1 km detected as flooded have
at least one survey flood report. The accuracy reaches 89% in the ENSA data when using a 20%
threshold for flooded pixels and a 5 km radius around the community. Further analysis could seek

to identify a threshold and distance to maximize predictive accuracy.
Household-level impacts of flooding

Flood exposure causes a variety of direct damages to agriculture, property, health, and life, but
also has broader indirect effects through sanitation, disease, land degradation, and infrastructure
damages. A large economics literature finds adverse impacts of flood exposure on many household
outcomes including food security, health, agricultural production, poverty, well-being, as well as
increases in displacement and temporary migration. We use panel data from the Enquéte sur
les Conditions de vie des Ménages et la Pauvreté au Tchad (ECOSIT) survey rounds from 2018-
2019, 2020-2021, and 2022 to identify causal effects of flooding in Chad. Community-level flood
exposure is identified by matching community coordinates to observations of flooding incidence in
the surrounding area in 2019-2020 after the baseline round using data from the VFM archive (VFM
data for 2021 and 2022 are not available). In addition, we also consider household reports of flood

exposure over the 2019-2022 period from the last survey round. We account for the non-random



components of flood exposure by estimating the probability of experiencing flooding during these
time periods as a function of location characteristics and prior flooding history. Households in
exposed and non-exposed communities are well-balanced in terms of baseline characteristics after

controlling for this probability.

The identification strategy compares changes in outcomes over time for households in communities
exposed to flooding against households in non-exposed communities in the same provinces with
the same estimated probability of exposure. The estimated impacts of flood exposure depend
on how exposure is defined. Exposure to pixels detected as flooded in the VFM data increases
the probability that households engage in non-farm enterprise activities in subsequent periods,
particularly in urban areas and in the periods immediately following the flood exposure. Being in a
community where at least one household reported a flood shock increases engagement in agricultural
production in the following periods, particularly for households with female heads and engaged in
non-farm enterprise at baseline. The estimated effect on non-farm enterprise engagement is also
positive and close to being statistically significant. These effects may represent household efforts

to diversify their livelihood strategies following a shock to their main source of income.

There are no average effects among the sample households of flood exposure on measures of house-
hold well-being such as food insecurity or perceived absolute or relative well-being, although survey-
based flood exposure increases the likelihood that households report exposure to other kinds of
shock. The average intent to treat effects based on community-level flood exposure likely mask
important heterogeneity across households by household-level exposure because only around 20%
of households in exposed communities typically report being directly affected by a flood shock
themselves. The low levels of direct exposure in most communities may drive estimated impacts
of flooding toward zero if other households in the community do not face adverse indirect effects.
Though not statistically significant, the positive and large coefficient for the effect of flood expo-
sure on an index of household food insecurity may suggest that directly affected households are
persistently more food insecure, but not sufficiently so to overcome null effects on other community
households.

Further research using the same data and identification strategy could explore this by using com-
munity flood exposure to instrument for households reporting a flood shock. This approach would
identify local average effects of direct flood exposure under the assumption that community-level
exposure only affects households through the probability that a household experiences direct flood-
related damages. This assumption would fail if indirect effects—for example through effects of
floods on prices or transportation—are important, so additional work could also try to separate
out direct and indirect effects of flood exposure. Data from the ENSA surveys could also be par-
ticularly valuable for testing effects on food insecurity, though the identification strategy would be
different because the ENSA data are not a panel. One approach would be to conduct a stacked
cross-sectional event study relying on different timing of when communities surveyed at different

points in time are first exposed to satellite-detected flooding.
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1 Introduction

The Republic of Chad is one of the largest countries in Africa, covering nearly 1.3 million km?,
much of this in the Sahara Desert in the north and arid Sahel in the center. Chad’s population of
over 17 million is among the fastest growing in the world and is primarily rural and concentrated
in the more agricultural south of the country (Figure Al). In line with this, the main household
activity is subsistence agriculture focused on staples such as millet, sorghum, and maize, and around
40% of the population lives below the poverty line. Chad’s government revenues come largely from
exploiting its considerable oil reserves, whose exports account for 40% of GDP compared to 30%
for agriculture.

Chad is among the countries most threatened by climate change. It ranks last among 187 coun-
tries in the 2023 Notre Dame Global Adaptation country index ratings (ND-GAIN; C. Chen et al.,
2015), based on a country’s vulnerability to climate change and its ability to improve resilience, and
fifth out of 190 on an index of vulnerability to humanitarian crises and disasters (Thow et al., 2023).
Though it rates better (148th of 188) on the Columbia Climate School’s recently released 2025 cli-
mate finance vulnerability index (Columbia Climate School, 2025, these assessments highlight the
extent to which climate change represents a threat to Chad.

This vulnerability is due to a combination of multiple factors. First, climate change is directly
threatening livelihoods and well-being. Increasing temperatures and more erratic rainfall create
major concerns about projected changes in cereal yields and in vector-borne diseases (such as
cholera and malaria) while also contributing to spreading desertification (shown most clearly by the
drying up of Lake Chad) and growing flood hazard (Abdi, 2017; ND-GAIN, 2025). More frequent
and intense droughts, floods, and heatwaves will affect human health, food security, and nutrition,
decrease crop and livestock productivity, reduce water availability, increase risk from agricultural
pests and diseases, force greater population displacement, and generally disrupt livelihoods (RCCC,
2024).

Chad’s infrastructure and socioeconomic characteristics make it more vulnerable to these threats.
The calculations in the ND-GAIN give Chad the worst score among all countries on access to re-
liable drinking water, medical staff, and access to paved roads, along with low scores on access
to sanitation, electricity access, slum population, and rural population (ND-GAIN, 2025). These
characteristics suggest major infrastructure and institutional constraints to protecting households
from the risk of floods and other climate shocks and to mitigating adverse effects of these shocks. In
addition, chronic regional and national insecurity, very high poverty rates, subsistence livelihoods
for a large share of the population, and a young and rapidly growing population all make Chad
highly vulnerable to the changing climate by limiting assets and other resources that could help
populations to adapt to or mitigate its effects (Abdi, 2017; ND-GAIN, 2025). Climate change is
likely to increase the risk of conflict and worsen current youth unemployment problems (RCCC,
2024), creating further vulnerability.

A particularly salient way that the threat from climate change is being realized in Chad is

through devastating flood disasters. Nearly three-quarters of floods reported in Chad since 1980



have occurred in the last 20 years, and three of the worst floods in Chad’s recent history (going
back to 1961) have occurred in the last decade and a half (ACAPS, 2024; Government of Chad,
2023a; OCHA, 2012). In 2012, 2022, and 2024, torrential downpours across much of the country
caused widespread flooding causing death, displacement, and major damages to cropland, homes,
and infrastructure, in addition to secondary effects from deteriorating sanitation conditions, spread
of disease, and disrupted livelihoods. The floods in 2022 and 2024 were particularly devastating,
directly affecting millions of people and causing displacement, infrastructure damage, destruction
of homes and agricultural production, and hundreds of deaths. Economic losses from the 2022
floods are estimated at over USD 400 million (World Bank, 2023), and the 2024 were even more
destructive.

In this report, we analyze the risk, incidence, and impacts of flooding in Chad. In Subsection 2.1
we review data on the geographic distribution of current fluvial and pluvial flood hazard and
exposure in Chad, where hazard is measured in terms of the depth of floods with a 1 in 100 annual
probability of occurring and exposure combines data on population distribution over space with
flood hazard data. In Subsection 2.2 we present projections of expected changes in flood hazard and
exposure under climate and population change projections for 2050 and discuss the implications
for flood vulnerability in Chad. Section 3 evaluates the annual incidence of flooding in Chad with
a focus on the period after 2010. We first discuss reports on aggregated flooding damages drawing
on government, multilateral, non-profit, and media reports, and present trends in river flows over
time from selected hydrological stations in Chad. In Subsection 3.1 we analyze reports of flood
shocks in multiple sources of household survey data over time. Subsection 3.2 provides an overview
of publicly-available databases using remote sensing methods to identify flood events in Chad. We
discuss how these could be used for near-real time flood monitoring, and then evaluate historical
incidence of flooding from 2012-2024 using data from the NOAA /George Mason University VIIRS
Flood Mapping product. Subsection 3.3 analyzes the level of agreement between survey reports
and remotely-sensed flood detection. Finally, in Section 4 we use data from the ECOSIT household
surveys to estimate impacts of community flood exposure on measures of household well-being,
adding to a growing literature on the short-term impacts of flooding on households with results
specific to the Chadian context.

The results of this report may be useful for policymakers and stakeholders working on climate
change resilience, disaster response, and social protection in Chad. Understanding the geographic
distribution of flood hazard and realizations may help to target resources and efforts to support
adaptation and resilience to increasing flood risk. Results emphasizing the recent and projected
increases in flood exposure and presenting causal household-level impacts of floods in Chad may
motivate greater attention and financing to such activities. This analysis also demonstrates that
many floods may occur in remote areas and go unreported by media or government sources, sug-
gesting a need for additional monitoring resources in remote but high-risk areas with vulnerable

populations.



2 Flood risk in Chad

Flooding is a recurring risk in many parts of Chad, with most floods occurring in the rainy season
from around May to October when heavy rains lead to a rapid rise in the levels of water courses
and bodies (Centre Régional AGRHYMET, 2024). The diverse geography of Chad results in
significant spatial variation in climate and precipitation (Red Cross Climate Centre, 2023). While
the northern regions receive less than 300 mm of rainfall annually, the southern provinces often
exceed 1,000 mm, creating distinct flood dynamics across the country (ACAPS, 2024; Government
of Chad, 2014, 2024). These difference dynamics contribute to the occurrence of various types
of floods, ranging from river overflows in the south to pluvial floods caused by intense rainfall.
The increasing frequency and severity of these events, driven by climate change and environmental
degradation, have turned flooding into a recurrent challenge for both rural and urban communities
(United Nations OCHA, 2024a).

Populations across Chad have different forms of flood vulnerability. Rural communities are
particularly vulnerable due to their reliance on rain-fed agriculture, which is highly exposed to sea-
sonal floods, and their dwellings often built with non-durable materials (ACAPS, 2024; FAO, 2023b;
IFRC, 2024). In urban areas, informal settlements—especially in N’Djamena—have expanded into
low-lying, flood-prone zones. Poorly maintained or non-existent drainage systems exacerbate the
effects of heavy rainfall, leading to chronic flooding, housing destruction, and widespread water
stagnation. This, in turn, increases the risk of waterborne diseases, particularly in neighborhoods
where floodwaters mix with sewage (ACAPS, 2024; Government of Chad, 2014). Displaced popula-
tions are among the most at risk, as they often shelter in temporary flood-exposed areas. Recurrent
floods have led to large-scale destruction and further displacement and dependency on humanitarian
aid (ACAPS, 2024; IFRC, 2024).

In this section we evaluate modeled estimates of current flood hazard and exposure in Chad
as well as predictions of how flooding risk is forecast to evolve over time. We present evidence on

realized flooding and exposure in Section 3.

Definitions

Fluvial/riverine flood: Inundation due to overflowing rivers or other water bodies.

Pluvial flood: Inundation due to precipitation exceeding soil absorption or drainage capacities.

Return period: The number of years within which a flood of a particular depth of inundation would be
expected to occur once. For example, inundation depths for floods with a 100-year return period have a 1%
chance of occurring in a given year (occur once in a 100 years in expectation).

Flood hazard: Estimated inundation depths of floods with a given return period.

Flood exposure: Land area, population, or economic activity at risk from a given level of flooding hazard.
SSP climate scenarios: Shared Socioeconomic Pathways projecting global changes up to 2100 as defined in
the IPCC Sixth Assessment Report on climate change in 2021. SSP1-2.6 represents an optimistic ‘sustainable
development’ scenario, and SSP2-4.5 a ‘middle of the road/business as usual’ scenario.




2.1 Present-day flood risk

Two main factors contribute to flood risk in Chad: vulnerability to extreme precipitation events
distributed through the river network and growing populations, particularly informal urban settle-
ments, in high-flood risk areas. The former factor affects flood hazard and the latter affects flood

exposure, and these are the two key elements of flood risk analysis.

2.1.1 Mapping flood hazard in Chad

Flood hazard relates to the estimated frequency and intensity of flood events. Estimates of flood
hazard draw on a large variety of models (Table A1l presents a summary of selected flood hazard
databases). The models incorporate high-resolution digital elevation, hydrological, and hydraulic
data and models primarily derived from remote sensing along with geospatial data on infrastructure
which may affect water flows to simulate water flows over space under different potential realizations
of precipitation over broad geographic areas. To accurately model flood hazard, the distribution
of precipitation in these simulations is designed to match historical patterns, but it may also be
modified based on predicted changes in precipitation, for example under various climate change
scenarios. Global flood hazard modeling has improved significantly in recent years, but still faces
limitations due to issues like data resolution, limited ground truth data in certain areas, and lack
of local calibration/validation (see Devitt et al. (2021, 2023) and Smith et al. (2018) for detailed
discussions). A discussion of these limitations is beyond the scope of this report. We present flood
hazard data from multiple sources, and these should be interpreted as strongly suggesting where
flood hazard is most concentrated.

To capture both the frequency and intensity dimensions of flood hazard, assessments typically
present results under different return periods. A return period is the estimated interval of time
between flood events of a given magnitude, where magnitude is typically estimated as depth of
inundation—the height of the water covering the ground. For example, a 100-year flood in a given
location is defined as a flood of a particular depth such that it has a 1% probability of occurring
in any given year. This means that in expectation we would have one such flood every 100 years,
but in reality there may be multiple or no such floods in any given 100-year period.

To quantify and map estimated flood hazard in Chad, we first present data the Fathom Global
Flood Map 3. These data are not public but were obtained with support from the World Bank
Social Protection team. The Fathom data have many advantages, including incorporating the
world’s most accurate published terrain model for flood modelling (FABDEM), presenting data
at a very high (30 m) resolution, and breaking out flood hazard from multiple different scenarios
(Fathom, 2022)." We present data on the depth of 100-year return period floods under 2020 climate
conditions and estimated flood defenses for two main types of floods. The database also includes
data on coastal flooding which is not relevant for Chad. Pluvial flooding results from intense

precipitation exceeding the absorption or drainage capacity of soils and infrastructure in locations

!Similar flooding hazard data is provided by the JBA Group, which is also not freely available but may be accessed
by partners such as the World Bank through their Development Data Partnership.



where the water is not able to drain or flow toward river networks sufficiently quickly to prevent
inundation. Fluvial or riverine flooding results when rivers or other water bodies exceed their
capacity and inundate surrounding areas as excess water flows into these bodies from throughout
the associated water catchment area. For both cases, we present estimated depth of defended
floods, which accounts for infrastructure that is designed to protect against floods of a given return
period.? Estimated depths of undefended fluvial floods are consistently greater but the results are
qualitatively very similar.

We focus on 100-year floods to represent the hazard from more extreme and damaging flood
events, and noting that hazard from more frequent and less severe floods is highly correlated with
hazard from 100-year floods. Studies analyzing global or national exposure to flood hazards tend
to focus on 100-year return periods (Arnell and Gosling, 2016; Boulange et al., 2021; Jongman
et al., 2012) and often use thresholds such as 10 or 15 cm depth under these flood events to identify
areas at medium risk from floods (Rentschler et al., 2022; Rogers et al., 2025). This depth might
seem low but 10 cm of average flood depth over a large area can cause a great deal of damage,
particularly taking into consideration how the water accumulates and flows. High-hazard areas
with more frequent floods of this depth or with 100-year floods of greater depth are a subset of
these medium hazard areas.

Figure 1 presents maps and histograms of the estimated depth of 100-year return period floods
in Chad under 2020 conditions.?> The hazard from pluvial flooding is more widespread across Chad,
as 18.2% of Chad’s non-permanent water area has predicted 100-year pluvial flood depth above 0
cm compared to 4.1% for fluvial floods. But the estimated depths are much lower for pluvial floods,
with 60.2% of pixels at risk estimated to experience less than 15 cm of inundation from 100-year
pluvial floods, compared to 15.4% of pixels at risk of fluvial floods. The median inundation depth
for 100-year fluvial floods in at-risk pixels is just under 45 cm, compared to less than 10 cm for a
100-year pluvial flood.

These results indicate that although pluvial flooding is a hazard for many parts of Chad, fluvial

flooding is by far the main driver of overall flooding hazard as measured by inundation depth.

ZWe focus on estimates for defended floods because these likely better represent what would truly be realized on
the ground. According to the Fathom Global Flood Map 3.0 methods document, “Known and estimated defence
standards are also applied at the same spatial scale as climate change factors, removing floods more frequent than
the given design standard. Known defences are generally available in North America and Europe, and so in their
absence elsewhere we estimate design standards based on a global flood protection dataset (Scussolini et al., 2016)
and degree of urbanisation. Where floods exceed the design standard of a defence, overtopping is represented by
calculating the return period of the marginal overtopping discharge” (Fathom, 2022, p. 7).

3 Administrative boundaries in these maps are from the geoBoundaries database (Runfola et al., 2020). These are
the boundaries used in Rogers et al. (2025) to assess changes in flood hazard and impact, and for consistency we
therefore use these same boundaries in all maps of flood hazard in this section. For maps showing survey-reported
flood incidence at the administrative level 2 (ADM2), we use the 2023 boundaries provided by the Institut National
de la Statistique, des Etudes Economiques et Démographiques du Tchad (INSEED, 2025) and hosted on the HDX
data portal. These boundary files, which include 70 departments, offer the most recent and comprehensive description
of Chad’s subnational units currently available, thus ensuring better alignment with recent survey data and current
administrative structures. At administrative level 3 (ADM3), the only available and sufficiently detailed shapefile
was sourced from the GADM database (version 2.5, July 2015). This dataset was used for finer-scale analysis where
ADMS3 resolution was necessary.



Though heavy precipitation may also cause damages without resulting in inundation, this type
of extreme weather event is considered as distinct from flooding even if it may have the same
proximate causes. In this report we focus exclusively on the threat from excess water that results
in inundation of dry land, though household reports of ‘lood’ shocks may conflate inundation and

more general water-related damages.

Figure 1: 100-year flood depths in Chad under 2020 conditions (Fathom)
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The map of 100-year fluvial flood depths in Panel A clearly shows how the level of hazard is

linked to the locations of lakes and rivers in Chad.* Consequently, the highest inundation levels are

“Figure A2 shows a map of major rivers in Chad using data from HydroSHEDs (Grill et al., 2019).



found along the Western border below lake Chad at the confluence of the Chari and Logone rivers
as well as along those two rivers, their tributaries, and the Salamat river. The 18.3% of pixels at
risk of fluvial floods with estimated 100-year depth greater than 105 cm are nearly all concentrated
in these areas, with the exception of some areas around wadis in and near the Djourab Depression
in Borkou. This hazard analysis is consistent with frequent reports of riverine flooding in these
regions during recent flood seasons (FAO, 2023b; IFRC, 2022, 2023; United Nations OCHA, 2022a).

We also consider data on fluvial flood hazard from two databases publicly available through the
Google Earth Engine portal. The World Resources Institute (WRI) Aqueduct v2 database provides
global estimated water depths for floods under various return periods and climate scenarios at a
1km resolution for large-scale river flows (World Resources Institute, 2025), and are widely used for
country hazard analysis. The EU Joint Research Center (JRC) Global River Flood Hazard Maps
vl database provides estimates of flood hazard globally for river systems with basins larger than
500 km? for return periods from 10 to 500 years (Baugh et al., 2024), also at a 1km resolution.
Both databases exclude purely pluvial floods, and we also observe that they do not identify flooding
hazard around small rivers and tributaries identified in shown in Figure 1, justifying our focus on
the Fathom data.’

Maps of estimated depth of 100 and 10 year floods using the WRI and JRC data are shown in
Figure A3 and Figure A4, respectively. The results for 10-year flooding hazard correspond quite
closely with maps of 100-year flooding hazard, with uniformly lower inundations depths but the
same areas with the highest estimated depths in both scenarios. The 100-year flood depths help
to better highlight the full spatial distribution in flooding hazard, supporting our decision to focus
on this hazard level. Results using the WRI database align fairly well with those from the Fathom
database with similar levels of estimated 100-year flood depth and locations of the most at-risk
areas, but identifying hazard along around major rivers. The JRC database has much higher
estimated flood depths across the whole country with high flood hazard extending at much greater
distances from rivers and lakes, with very high estimated depths across entire departements at the
confluence of the Logone and Chari rivers. This suggests that the JRC global flood model may not
be as well-calibrated to conditions in Chad.

To further analyze the relative hazard from fluvial and pluvial floods, we use data from Rogers
et al. (2025), a recent publication analyzing the roles of climate change and population growth in
determining predicted population flood exposure through the rest of the the 21st century. The
authors analyze flood hazard using a variety of models at a 90m resolution to capture hazard from

fluvial, pluvial, and coastal (from lakes and oceans) flooding.’ The publicly-available data provided

SFor reasons we do not understand, the JRC data do not cover the northernmost part of Chad.

5The fluvial model uses “a cascading sequence of hydrologic and hydraulic simulators that derive depths within a
river network by routing daily runoff from a suite of 27 simulations of the CMIP6 suite of GCMs” (p.8). The pluvial
model “was forced by global extreme precipitation projections derived from CMIP6 GCM results” and “combined
an efficient fill-spill-merge (FSM) algorithm that infills low areas with a modified rational method model used in
combination with Manning’s equation to approximate overland flow depth” (p.8). The coastal/lake model “used
multiple climate projection datasets to estimate the effects of sea-level rise and storm surge, tides, and waves on
coastal inundation, as well as storm surge and lake levels on lake shoreline inundation” (p.7). The For both the
fluvial and coastal flood models, the floodplain inundation model “was based on the Height Above Nearest Drainage



by the authors is aggregated to the admin-2 level globally and focuses exclusively on hazard and
exposure from floods with 100-year inundation depth of at least 10 cm, but nevertheless allows us
to map spatial variation in flood hazard by flooding type across Chad.

The first row of Figure 2 presents the total area by departement estimated to suffer at least 10
cm of inundation depth during 100-year floods in Chad under 2020 conditions across all flood types
(Panel A) and separately for fluvial (Panel B) and pluvial (Panel C) floods.” The results should
therefore be interpreted as representing land exposure to moderate flooding, though in the case of
Chad a large portion of this exposure will include areas at more regular hazard of more severe floods.
As with the results from the Fathom database, the figure shows that the greatest flood hazard is in
the southern half of Chad. This is particularly striking when presented in terms of the percentage
of departement area exposed to floods (second row), with over 40% of land area exposed in a large
number of departements, notably in Lac, Hadjer-Lamis, N’'Djamena, Chai-Baguirmi, Mayo-Kebbi
Est, Tandjile, Moyen-Chari, and Salamat provinces.

The figure further emphasizes that while pluvial flooding does contribute to overall flood hazard
in Chad, and is a relatively more important hazard in the arid north, the main driver of flood hazard
is fluvial flooding, indicating that a focus on riverine floods should reveal the locations with the
greatest estimated flood hazard. While large land areas are exposed to pluvial floods, at the
departement level the shares of area exposed are uniformly small. As shown in the Fathom data,
these exposed areas also largely represent locations with inundations depths not much greater than
10 cm from 100-year return period pluvial floods, whereas the inundation depths for many of the

areas exposed to fluvial floods are much greater.

2.1.2 Mapping flood exposure in Chad

Flood hazard alone is not sufficient to determine appropriate policy responses, so flood risk assess-
ments also consider human and natural consequences in terms of both exposure and vulnerability.
Ezposure relates to the human elements—population, infrastructure, economic activity—affected
by a given level of flood hazard. Vulnerability measures susceptibility to damage under a given
flood event, which is a function of both exposure and any measures used to mitigate or recover
from flood damages. While data on vulnerability to flooding is scarce in the context of Chad,
data on the distribution of population allows estimates of flood exposure. Exposure can also be
analyzed in terms of economic activity, agricultural land, and more, but in this report we focus on
population exposure which broadly captures where people are at higher risk from floods regardless
of their economic activities. An understanding of flooding population exposure is critical for iden-
tifying priority areas for flood risk prevention, mitigation, and response particularly in the context
of social protection programs, whereas economic development programs might be more concerned

with economic exposure.

(HAND) algorithm, which applies flood levels of constant elevation along flow paths” (p.8). Additional detail on the
methods are included in the paper (Rogers et al., 2025).

"Coastal/lake flooding contributes minimally to flood hazard in Chad except in very specific areas, so we do not
show it separately.



Figure 2: Land exposed to >10 cm 100-year flood depths under 2020 conditions (Rogers et al)
A) Combined floods B) Fluvial floods C) Pluvial floods
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Note: Authors’ calculations based on data from Rogers et al. (2025) provided at the admin-2 level. Flood exposure is defined
as estimated depth of 100-year floods of at least 10 cm.

Rural communities are vulnerable to flood damages due to their reliance on rain-fed agriculture
and often less durable dwelling materials, but the greatest population exposure to flood risk is
in urban areas. Chad’s urban population more than doubled between 1995 and 2015 (UNDESA,
2018). A large share of the population remains rural but there is increasing migration to urban
areas, most of which are in close proximity to rivers and lakes and therefore face greater flooding
hazards. For example, N’'Djamena is located at the confluence of the Chari and Logone rivers. But
also, many of the areas settled by recent arrivals in urban areas are in low-lying, flood-prone zones.
Population growth in such areas contributes to high flood exposure.

In addition to having higher populations in areas of higher flood hazard, other factors are also
contributing to high vulnerability of populations in urban areas: unregulated build-up in high

flood hazard zones, inadequate infrastructure, and land degradation (World Bank, 2023). Urban



infrastructure, in particular for water drainage and flood management, is inadequate to meet the
growing flooding hazards due to climate change and the growing needs from increasing populations,
many of which reside in informal structures more vulnerable to flooding. Finally, deforestation
and land degradation around settled communities is reducing natural sources of flood protection,
compounding the increasing risk from urbanization. These characteristics contribute to making
Chad the country rated as most vulnerable to climate change in the world (ND-GAIN, 2025).

To highlight the areas with the highest populations exposed to flood risk, we combine data from
Fathom with data from WorldPop (2025). WorldPop provides 1 km gridded population density
estimates for the year 2020 based on data on administative unit-based census counts together with
detailed geospatial datasets used to disaggregate the data to a grid level. Population density is
computed by dividing the estimated population by cell area. Chad last completed a census in 2009,
meaning subnational variation in migration, fertility, or mortality could create uncertainty in the
2020 population projections, but the WorldPop data are considered to be among the most accurate
available disaggregated sources of population data (Bai et al., 2018; Thomson et al., 2022).

Figure 3 maps population density data from WorldPop in areas with a particular level of flood
hazard, showing all land area and then only areas with 100-year fluvial flood depths of at least 10
and 100 cm. The maps show clearly that although flood hazard is widespread in Chad, population
exposure is concentrated primarily in particular departements. The area around and between the
Logone and Chari rivers stands out as combining both high flood hazard and high population

exposure.

Figure 3: Population density exposed to different 100-year fluvial flooding hazards (Fathom)
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Source: Authors’ calculations based on data from Fathom (2022) and WorldPop (2025). Flood hazard is based on the estimated
depth of 100-year fluvial floods under current conditions.

Rogers et al. (2025) combine their flood hazard model results with population data from the
Gridded Population of the World project (Center for International Earth Science Information Net-
work - CIESIN - Columbia University, 2018) and projections from the United Nations World Popu-
lation Prospects medium variant projection to estimate population exposure to moderate flood risk

(100-year floods of at least 10 cm) globally at the admin-2 level. Figure 4 shows that the results are
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quite similar to those in Figure 3, highlighting the same departements as being the areas with the
greatest population exposure. The figure reveals that hundreds of thousands of people are exposed
to 100-year floods over 10 cm in depth in many departements in Chad, and particularly in the
southern part of the country. In total, over 25% of the population—4.2 million people—are at risk
of such floods across all of Chad (Table 1). These populations are largely concentrated in densely
populated towns in the south and west; N’Djamena alone includes 538,000 people exposed to this
level of flood risk, partly due to rapid urban growth in flood-prone zones (Croix-Rouge du Tchad
(CRT), 2024a, 2024b).

Exposure in the more arid north is limited due to both lower flood hazard and limited population
in these areas. Of these 4.2 million people at risk of at least 10 cm of inundation under 100-year
floods according to Rogers et al. (2025), 3.6 million are exposed to this risk from fluvial floods and
1.3 million are exposed to this risk from pluvial floods, indicating that 0.7 million are exposed to
at least moderate risk from both types of flooding. The population exposure to pluvial floods is
thinly spread across the country and hard to detect visually (Panel C, top row) while exposure to
fluvial floods is by definition concentrated in areas with rivers and therefore easier to identify in
the Figure.

The second row of Figure 4 shows the shares of total departement population exposed to 10 cm
100-year floods. These figures emphasize the high levels of exposure in certain southern departe-
ments. Although the absolute populations exposed are much smaller than the exposed population
in N'Djamena, nine departements have over 50% of their population exposed to this level of flood
risk: Loug Chari, Mayo Lemye, Mayo Boneye, Haraze Manguiegne, Tandjile Est, Lac Iro, Bahr
Azoum, Chari, and Haraze Al Biar. The median departement has 18% population exposure. This
aligns with research from Rentschler et al. (2022), which shows that the share of the population
in Chad exposed to 100-year floods of at least 15 cm is among the highest in the world, with the
highest exposure in the southern provinces (Figure A5).

We calculate additional departement-level measures of population flood exposure using the
data from the WRI, combining these with administrative boundary data from Runfola et al. (2020)
and use 1 km resolution population data from Center for International Earth Science Information
Network - CIESIN - Columbia University (2018) to identify the population exposed to 100-year
floods of at least 10 cm (Figure A6). We note that exposure measures are likely to be sensitive
to the choice of population data, but we use the same population data as Rogers et al. (2025) for
comparability.® The WRI database suggests population exposure is greatest around Lake Chad,
Lake Fitri and N’Djamena. In general, it yields lower exposure estimates than the Rogers et al.
(2025) estimates. This is likely because the WRI flooding model only includes fluvial risk along
major rivers while the Rogers et al. (2025) model considers all fluvial and pluvial flooding risk.

Despite these differences, all three sources—Fathom, Rogers et al. (2025), and WRI—point
to the same conclusions: the Lake Chad basin, the capital N’'Djamena, the Logone basin (Mayo

8We use data from WorldPop (2025) when mapping population exposure to satellite-detected floods as some
research suggests these data may be more accurate than the GPW population data.
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Figure 4: Population exposed to >10 cm 100-year flood depths under 2020 conditions (Rogers et
al)

A) Combined floods B) Fluvial floods C) Pluvial floods
Population exposure (1000s)  Population exposure (1000s)  Population exposure (1000s)

Note: Authors’ calculations based on data from Rogers et al. (2025) provided at the Admin-2 level. Flood exposure is defined
as estimated depth of 100-year floods of at least 10 cm.

Kebbi, Tandjilé), and the Chari basin (Moyen-Chari, Mandoul) stand out as areas combining
high inundation depths under 100-year floods and high populations, leading to greater population

exposure.

2.2 Looking forward: increasing flood risk

Globally, climate change is expected to increase flood hazard by increasing the variability of rainfall
and the frequency of extreme rainfall events, while population growth in floodplains increases the
number of people potentially exposed to flooding (Portner et al., 2022; Rogers et al., 2025). Changes
in infrastructure and flooding defenses will affect vulnerability to flooding but are difficult to model.
On the other hand, climate change and population growth projections can be incorporated into
flood risk models to estimate changes in flood risk over the coming decades.

Considering first how climate change is affecting flood hazard, Figure 5 illustrates that floods

causing a depth of inundation that we would expect once every 100 years under current conditions
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are expected to become more frequent across most of the world by the year 2100. The increases in

flood hazard are greatest in developing countries, including notably in sub-Saharan Africa.

Figure 5: Projected changes in flood hazard from 2017 to 2100

Return period (years)

5 25 50 75 95 106 125 250 500 1.000

< : | g
Increased ' Decrease
flood flood
frequency frequency

Note: Figure from Portner et al. (2022). The figure illustrates the change in the return period for a flood with the inundation
depth of a 100-year flood in 2017.

To evaluate predicted changes in flood hazard for Chad specifically, we use data on 100-year
floods under 2050 conditions from Fathom, Rogers et al. (2025), and the WRI database. For each
database we consider predictions based on climate change and population growth scenario from
the IPCC Sixth Assessment Report on climate change. In particular we consider the ’sustainable
development scenario’ SSP1-2.6, in which global CO9 emissions decrease strongly, economies shift
toward sustainable development practices, and the temperature increase stabilizes at around 1.8°
by 2100, as well as the ‘middle of the road/business as usual’ scenario SSP2-4.5, in which CO,
emissions remain stable before beginning to decrease around 2050, socioeconomic factors do not
change significantly, and temperatures increase by 2.7° by 2100. While patterns of climate change
and population growth may deviate from these scenarios, they is illustrative of potential future
flood risk conditions.

Figure 6 shows that calculations based on the Fathom models and projected climate change and
population growth predict limited increases in flood hazard between 2020 and 2050. We consider
the SSP1-2.6 scenario as data on defended fluvial and pluvial flood hazard under the SSP2-4..5
scenario in Chad was not provided by Fathom. The share of pixels exposed to fluvial floods will
increase from 4.1% to 4.4%, and median depth of 100-year floods increases from slightly under
to slightly over 45 cm consistent with a slight rightward shift of the distribution of inundation

depths. For fluvial floods, the share of pixels exposed to any flooding will increase from 18.2% to
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19.4%—a larger absolute increase but a slightly smaller relative increase—and the median 100-year
flood depth remains between 10-15 cm. Looking at data for undefended fluvial floods as data on
SSP2-4.5 scenario were not provided for defended fluvial floods, we find that the increased hazard
is similar under climate change scenarios SSP1-2.6 and SSP2-4.5 (Figure A7). The share of exposed
cells increases from 4.1% to 4.4% and 4.5% respectively and median flood depth is only slightly
greater under SSP2-4.5 despite this being a less optimistic climate change scenario.

Figure 6: Projected change in 100-year flood depths in Chad under 2050 conditions (Fathom)
A) Fluvial floods (defended), 2020 B) Fluvial floods (defended), 2050 SSP1-2.6
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Note: Authors’ calculations based on data from Fathom (2022). Each panel presents data on the depth of inundation under
100 year floods in cm for fluvial and pluvial floods separately. The data in panels B and D are projections of changes in flood
hazard under climate change and population growth scenario SSP1-2.6 from the IPCC Sixth Assessment Report on climate

change.

Data from World Resources Institute (2025) which primarily captures fluvial flooding, shows
larger predicted increases in depths of 100 year floods than the Fathom data (Figure A8). The
largest predicted increases are in Bahr el Gazel, Borkou, and Kanem provinces. We place greater
confidence in the Fathom data and predictions but these differences, related to different modeling
choices and input data, show there is some uncertainty in how flooding risk will evolve in Chad
and that increases in flood hazard may be large in certain areas.

Figure 7 presents results from Rogers et al. (2025) considering both fluvial and pluvial flooding
together showing projected changes in the area and population exposed to 100-year floods of at
least 10 cm between 2020 and 2050 SSP2-4.5 conditions. In total, the area exposed to floods of
such a depth is predicted to increase from 226,000 km? to 238,000 km?. This represents an increase
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from 17.9% to 18.9% of Chad’s land area, similar to the changes in exposure to pluvial flood risk
in Figure 6. The largest increases in exposure under this model are predicted around Lake Chad
and the Chari river basin, though in general these increases are small and spread across many
departements so are hard to detect visually (first row of Figure 7). The Fathom data suggests that
much of this change is due to small increases in inundation depths in areas with currently small

risk of flooding, with a smaller share due to areas newly at risk of inundation.

Figure 7: Projected changes in exposure to >10 cm 100-year floods (Rogers et al)
A) 2020, land area exposed ~ B) 2050 SSP2-4.5, land area
(100s km?) exposed (100s km?)

D) 2050 SSP2-4.5, population
(1000s) exposed (1000s)

Note: Authors’ calculations based on data from Rogers et al. (2025). The figure compares population flood exposure from all
flood types under 2020 conditions (Panel A) compared to 2050 climate and population conditions projected under SSP2-4.5
(Panel B). Flood exposure is based on 100-year floods causing at least 10 cm of inundation depth.

In addition to increases in flood hazard, population growth will affect exposure to floods in
coming decades. Most of projected population growth between now and 2050 is expected to come
from developing countries, with 26 African countries—including Chad—expected to at least double
in population between 2017 and 2050 (UNDESA, 2017). Current population exposure to floods is

greatest in South, East, and Southeast Asia but the largest increases in coming decades are pre-
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dicted to occur in South Asia and sub-Saharan Africa, with certain parts of the world experiencing
decreases in exposure (Figure A9).

Rogers et al. (2025) analyze the relative contribution of changes in flood hazard and population
to determining future flood exposure, and find that 77% of changes in exposure by 2100 globally
are due to population growth, compared to 21% due to climate change (and 2% to a combination of
the two). This results can be seen directly from Figure 7, where we observe limited changes in area
at risk of 10 cm 100-year flood depths in the top row while the bottom row shows large increases in
population exposure across most of Chad, with the greatest increases along the Chari river basin.
The authors’ calculations indicate that the population exposed to this level of flood risk will more
than double from 4.2 to 9.9 million people, compared to just a 5% increase in the area exposed.

Table 1 shows the ten departements with the highest levels of population exposure to floods
in Chad. As most of the forecast population growth is expected to take place in urban areas
that already have the largest population flooding exposure, these departements are the same when
considering exposure under 2020 and 2050 conditions. The fraction of the population exposed
in each departement is also only forecast to increase slightly (Figure A10), indicating that the
predictions are based on similar rates of population growth inside and outside of high flood hazard
areas. These results indicate that flood protection interventions targeting areas with the highest
current levels of flood exposure will also be useful in protecting against projected increases in flood

risk over time.

Table 1: Departements with greatest exposure to >10 cm 100-year floods

2020 conditions 2050 SSP2-4.5 conditions

Area Area
Pop. Pop. (1000s  Area Pop. Pop. (1000s  Areq
Departement  (1000s) (%) km?) (%) (1000s) (%) km?) (%)

Baguirmi 123.72  43.85 11.98  44.26 299.93 48.24 13.18  48.70
Bahr-Azoum 145.93 58.34 15.62  58.64 338.66  61.45 16.45 61.76
Bahr-Koh 195.88  48.82 8.49  49.45 453.93  51.35 8.93 52.01
Chari 156.54  57.28 2.77  63.86 380.70  63.22 3.04 70.24
Dababa 122.83  39.70 6.48 40.11 293.06 42.99 7.02 43.44
Lac Iro 143.95 59.91 10.57  60.43 330.11  62.36 11.00  62.90
Loug-Chari 202.36  72.81 11.21  73.74 469.47  76.67 11.81  77.69
Mayo-Boneye 231.11  71.02 6.09 72.04 527.20  73.53 6.30  74.59
N’Djaména 538.09  38.41 0.17 42.26  1412.12 45.75 0.21  50.95
Tandjilé Est 202.50  61.50 777  62.57 456.78  62.97 7.96  64.07
Total 4176.85 25.50 225.93 17.95 9852.03 27.30 238.24 18.93

Note: Authors’ calculations based on data from Rogers et al. (2025). Flood exposure is based on 100-year floods with at least
10 cm of inundation depth combined across all flood types.

The large increases in population exposure despite limited increases in flood hazard emphasize

that population growth is the main driver of predicted exposure to flooding going forward in Chad.
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Predicted increases in flood risk may not be realized if efforts are made to prevent or mitigate flood
exposure. Improved communications, investment in flood defenses, water management infrastruc-
ture, and improved housing, and support for relocation or protection of informal settlements in
areas with high flooding hazard could reduce vulnerability to flooding even as flood hazards and
the exposed population increase. A review of efforts that are being undertaken to attempt to re-
spond to floods and reduce flood vulnerability in Chad is outside of the scope of this report, but we
present a general overview of selected key stakeholders in flood management in Chad in Appendix

C.

3 Incidence of flooding

The analysis of predicted flooding hazard and exposure is useful for identifying the areas at greatest
risk of future floods under different climate change scenarios. Another approach to analyzing flood-
ing risk is to consider historical incidence of flooding. Areas that have experienced more frequent
or more severe flooding may also be at higher risk of future floods, particularly for areas exposed
to multiple or recurring floods. Considering flooding incidence also provides an opportunity to val-
idate flood risk predictions by considering whether flood realizations are indeed more concentrated
in areas with higher flood hazard.

Historically, flooding in Chad was an infrequent event but it has now become an almost annual
occurrence, due to both climate change and shifting precipitation patterns as well as population
growth in flood-prone areas (Government of Chad, 2023c; IRD, 2024; United Nations OCHA,
2024a). Over the past three decades, Chad has experienced several major floods, with the 2022
and 2024 floods considered the most severe since 1961 (Government of Chad, 2014, 2023b, 2023c).
Figure 8 illustrates how major reported flood events have been increasing over time from 1980-
2021, with 71% in the last 20 years in contrast to major drought events which have been more
stable in frequency over this period. Data on flood events from the International Disaster Database
EM-DAT (Guha-Sapir et al., 2023), based on official and media reports, shows similar patterns of
increasing population exposure over the last 25 years (Figure Al1).

In addition to increasing annual frequency, the extent of flooding has expanded, with some
areas experiencing more than 120 days of annual flooding in recent years, a significant increase
from previous decades (FAO, 2023b, 2023d). Moreover, flooding seasons have begun earlier in
recent years, with major river overflows now occurring before historical peak rainfall periods (FAO,
2023c, 2024a). In 2024, for example, heavy rains had already started causing flooding in early July,
whereas the flooding season typically begins in August.

Data from the Chad Direction des Ressources en Eau (DRE) on river flows through selected
hydrological stations going back to 1985 illustrates how river flows have changed over time. Figure 9
presents monthly water flows averaged across stations over five year periods. We observe that
average water levels have increased significantly for all months relative to the period from 1985-

1994. The largest absolute increases are seen in the months of greatest flooding risk in Chad and
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Figure 8: Historical exposure to flooding in Chad

FIGURE 2.1 I Number of climate-related events (left) and proportion of population affected by floods (right)

in Chad
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Note: Figure from World Bank (2023).

particularly from September to November. The most recent period from 2020-2024 stands out as
having the highest average water flows during the flooding season, consistent with these being a

period with multiple years of widespread flooding in Chad.

Figure 9: Average water flows across stations by month, over time

600
5004
1985-1089
100 —— 1990-1994
—— 1995-1999
g 2000-200:
= 300- s
G — 2005-2009
2010-2014
200{ S5 2015-2019
— 2020-2024
100+
0-

1 2 3 1 5 6 7 8 9 10 11 12
Month

Note: Authors’ analysis based on data obtained from the Chad Direction des Ressources en Eau (DRE). The original data
are station-level monthly average water flows by year. We take the average by month across all stations in each year, and
then the average of these values for each five-year period to better illustrate changes over time. Annual averages are shown in
Figure A12.

Higher average water levels across all periods of the year over time are consistent with increasing
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fluvial flood hazard in Chad. This pattern would appear to be inconsistent with research that has
found stagnant or decreasing trends for total precipitation levels in Chad since at least the 1950s
(Mahmood et al., 2019; Pattnayak et al., 2019). But changes in land use, land cover, and water
management can lead to more precipitation making its way into rivers even as precipitation falls,
and this could be an important reason for fluvial flooding being a much greater hazard in Chad
than pluvial flooding. Farmland expansion, urbanization, deforestation, and soil degradation have
all been documented in Chad in recent decades (CIAT et al., 2021) and could all lead to increased
surface water runoff.

The increase in flooding hazard over time has resulted in larger areas and populations being
reported as affected by flooding. Some of this increase may be due to better monitoring and
reporting of floods over time, but available sources agree that more recent floods have been more
damaging. Table 2 summarizes evidence on the aggregate effects of flooding for selected recent
major flood events. We note that the numbers presented in this table are just estimates of flooding
damages, and that there is disagreement across sources. The 2024 floods in Chad have the highest
reported population affected, area flooded, and number of houses destroyed, followed by the 2022
floods.

The 2022 floods impacted 19 of Chad’s 23 provinces, with the most affected areas including
Mayo-Kebbi Est, Logone Occidental, Tandjilé, Mandoul, and N’'Djamena. Multiple sources report
that Mayo-Kebbi Est and Tandjilé were among the hardest hit in terms of population affected, with
the Lac province also experiencing a high number of displaced people (FAO, 2023b; Government
of Chad, 2023b; IFRC, 2022, 2023; United Nations OCHA, 2022a). In total 1.4 million people
were affected, 465,030 hectares of farmland flooded, 80,000 houses destroyed, and 20,000 cattle lost
(Government of Chad, 2023b, 2023c; United Nations OCHA, 2022a).

Table 2: Summary of reported effects of recent major flood events

Affected Flooded Houses
Year population land (ha)  destroyed
2012 466,000% - 613,631/ 255,000¢ 96,000
2014  8,000¢ - -
2019 171,000 18,000® 2,700¢
2020 36,934% - 388,000 150,000 -

2021 255,000% - 269,180% —~ -

2022 1,100,229¢ - 1,426,948 465,030  80,000°
2023 — 18,130% 2,700
2024 1,945,674% - 2,000,000° 1,862,800¢ 218,000°

@ OCHA, 2012, 2014, 2019, 2020, 2022, 2023.
b Government of Chad, 2023c. ¢ ACAPS, 2024. ¢ Guha-Sapir et al., 2023 (EM-DAT). € FAO, 2024b.

19



In 2024, water levels along the Chari-Logone system reached or surpassed the peaks recorded
during the devastating 2022 floods (IFRC, 2024; IRD, 2024; UNICEF, 2024). Flooding intensified
in this region compared to 2022 but was also more widespread, affecting nearly all departements
in Chad. As of October 1, 2024, around 2 million people were affected, 576 fatalities recorded,
432,203 hectares of cropland were destroyed, and over 72,170 heads of livestock lost. In addition,
217,779 homes were demolished resulting in the displacement of 342,471 households (IFRC, 2024;
MASSAH, 2025; United Nations OCHA, 2024b, 2025).

While this aggregate view of flood realizations and damages from government and media reports
is useful to establish a broad perspective of the evolution in flooding incidence in Chad, it is less
helpful for understanding geographic variation in flooding incidence and therefore to identify the
most at-risk areas. Moreover, these sources often have better coverage of flood exposure in more
populated areas and worse in remote areas. Flood event databases focusing on major reported
floods include the International Disaster Database (EM-DAT), the Global Flood Monitor, DesIn-
ventar Sendai, the Dartmouth Flood Observatory (DFO) Archive, and the Global Flood Database
(Table A2). These vary in the level of geographic detail they provide on flood events but most do
not go below the admin2 level. They are also not updated frequently and include only a subset of
total flood events. Patel (2025) for example finds that the DFO reports over 800 more country-
years with flood events than does EM-DAT while EM-DAT lists nearly 800 floods not included in
the DFO, and that the databases are more likely to miss smaller floods and floods in lower-income
areas. We find that the EM-DAT archive lists no flood events in Chad in 2019 or 2023 (Figure A11)
although other sources document important localized flooding in both of these years.

A variety of other data sources may be used to detect flooding incidence, as summarized in
Table 3. Survey reports can provide a local and direct measure of flooding experiences, similar to
the type of information that may feed into government and media reports. An advantage of using
survey data is that it directly measures flood exposure, whereas the other measures described above
only proxy for flooding, though what is measured depends on how questions about flooding are
asked and reports are subject to human error. In addition, while surveys can ask retrospectively
about flooding over a given time period, survey data are restricted to a limited number of points in
space and time. Extreme precipitation is associated with increased risk of flooding, but challenges
in accurate measurement of local precipitation over space together with the fact that rainfall may
increase flood risk downstream rather than where the rainfall is realized make it an imperfect proxy
of flooding. River flow data such as the DRE data presented in Figure 9 can show when river levels
are unusually high, a potential indicator of elevated flooding risk, but are restricted to only a few
locations in space.? Finally, remotely-sensed data—in particular data collected by satellites—is
increasingly being used in flood detection thanks to algorithms that allow the detection of surface
water. These data are now available at high spatial and temporal frequency, but are limited in
terms of the types of flooding events they can detect and in their accuracy.

Numerous sources have begun tracking and reporting on flooding in Chad in recent years,

9Figure A13 maps station-level average water flows for the August-November period over time.
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Table 3: Comparison of general flooding incidence data sources

Data source

Advantages

Disadvantages

Media/ gov-
ernment/  other
published reports

Usually validated on the
ground; often include data on
human and economic impacts

Usually limited geographic detail;
many flood events not documented;
limited historical coverage

Survey reports

Validated measure of expo-
sure; high geographic detail;
often include data on human
and economic impacts

Measurement differences across sur-
veys, confounding of precipitation
and inundation shocks; typically
identifies only affected households
and not general exposure; only
available at selected points in space
and time

Precipitation

Key driver of flood incidence,
may also cause direct damage;
estimates available at high
resolution over many decades

Does not measure inundation; chal-
lenges in accurate measurement of
local precipitation, especially in re-
mote areas

River flows

Validated indicator of fluvial
flood hazard; ability to com-
pare over time

Not a direct measure of inundation
outside a river; only available at a
small number of points in space

Remote
(satellites)

sensing

High-frequency and high-
resolution detection of surface
inundation

May miss certain floods (short
duration; in urban or forested
areas) or misidentify inundation

(seasonal/anticipated water fluctua-
tions, bare earth)

Note: Authors’ summary based on information provided by each source.

often combining data from government sources with other measures of flood incidence, notably
remotely-sensed measures. The World Food Programme now publishes regular flooding bulletins
using information from the Advanced Disaster Analysis & Mapping (ADAM) database, overlaid
with spatial population and land cover data to estimate exposure and impacts (see Figure A14
for example). The ADAM database uses publicly-available VIIRS and MODIS satellite imagery
and Sentinel-1 satellite radar together with paid Floodscan near real-time remotely-sensed inci-
dence maps. The United Nations Food and Agriculture Organization (FAO) Data in Emergencies
Monitoring (DIEM) conducts household surveys in emergency settings and also publishes reports
which combine data from the ADAM database with other sources. The United Nations Office for
the Coordination of Humanitarian Affairs (UNOCHA) produces reports that aggregate data from
government sources and local NGOs (see Figure A15 for example). Other sources, including gov-
ernment agencies and the Chadian Red Cross, also publish reports on flooding in Chad, but none
of these sources provide public access to the underlying data to support analysis.

In the following sub-sections, we present data on incidence of flooding as reported in various
household surveys in Chad and as detected using satellite data, test the correlations in flood

detection across survey and satellite sources, and use satellite data to identify ‘hot spots’ for recent
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Key flood incidence data sources

ENSA surveys (Enquéte Nationale sur la Sécurité Alimentaire): nationally-representative for rural commu-
nities, conducted annually; data from 2016-2024 obtained from SISAAP

ECOSIT surveys (Enquéte sur les Conditions de vie des Ménages et la Pauvreté au Tchad): nationally-
representative; data from 2018-19 and 2022 obtained from INSEED

VFM Archive (NOAA/George Mason University VIIRS Flood Mapping archive): global database of daily
flood detection at a 375m resolution based on an algorithm using VIIRS satellite imagery to identify changes
in the presence of surface water

flood exposure.

3.1 Survey-reported flood incidence

We identified four sources of household surveys conducted in Chad at different points in time
which ask respondents about recent flood experiences and for which we were able to obtain data.
The available data are summarized in Table 4. While each survey differs in geographic scope,
methodology, and timing, together they provide an on-the-ground perspective on where floods

have affected populations across the country in recent years.

Table 4: Summary of available survey reports of flood incidence

% Survey
Count communities
Total reporting w/ any flood Time period Geographic
Survey Round (period) respondents any flood reported covered identifier Coverage
RIMA Oct 2014 8516 - 3.57 Apr — Oct 2014 ADM?2 Rural
ENSA Oct 2016 9544 209 8.85 May — Oct 2016 ADM3 Rural
Oct 2017 9165 413 15.80 May — Oct 2017 ADM3 Rural
Oct 2018 8924 181 10.23 May — Oct 2018 ADM3 Rural
Oct—Nov 2019 6920 542 25.41 May — Nov 2019 ADM3 Rural
Oct—Nov 2020 13208 2627 45.20 May — Nov 2020 Community Rural
Oct—Nov 2021 14761 893 25.39 May — Nov 2021 Community Rural
Oct—Nov 2022 13691 4291 60.52 May — Nov 2022 Community Rural
Oct—Nov 2023 14776 803 21.92 May — Nov 2023 Community Rural
Oct—Nov 2024 19672 9151 85.94 May — Nov 2024 Community Rural
ECOSIT 4 Jun-Sept 2018 (R1) 3744 387 51.25 Jun 2015 - Sep 2018 Community National
Jan—Apr 2019 (R2) 3756 368 48.74 Jan 2016 — Apr 2019 Community National
ECOSIT 5 Jan-Apr 2022 (R1) 3809 438 52.20 Jan 2019 — Apr 2022 Community National
Sep-Dec 2022 (R2) 3723 284 42.12 Sep 2019 — Dec 2022 Community National
DIEM Nov—Dec 2021(R2) 1692 173 4.49 Aug — Dec 2021 ADM2 Limited
Aug-Sep 2022 (R3) 3704 194 5.04 May — Sept 2022 ADM2 Limited
Dec 2022-Jan 2023 (R4) 5310 1425 37.05 Sept 2022— Jan 2023 ADM2 Limited
Aug-Oct 2023 (R5) 5821 122 3.17 May — Oct 2023 ADM2 Limited
Dec 2023-Jan 2024 (R6) 5683 409 10.63 Sept 2023- Jan 2024 ADM2 Limited
Aug—Sep 2024 (R7) 4853 825 21.45 May — Sept 2024 ADM?2 Limited
Jan—-Feb 2025 (R8) 5624 698 18.14 Oct 2024 — Feb 2025 ADM?2 Limited

Note: Authors’ analysis based on separate household surveys. This table summarizes the number and share of households
reporting flood-related shocks across four household surveys (RIMA, ENSA, ECOSIT, and DIEM). In RIMA and ENSA, floods
are reported over the past 6 months, in ECOSIT, over the past 3 years, and in DIEM, over the past 3 months. Covered time
periods are based on survey timing and recall periods. The geographic identifier is the most precise location we are able to
identify in the data. Coverage indicates the degree to which the survey samples are representative of the population of Chad.

In all surveys, we use questions related to households’ recent flooding experience to categorize

households and communities as having had any flood exposure. Because the time periods and spe-
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cific questions used to ask about household flooding experiences differ across surveys, the frequency
of flood reporting over time across surveys cannot be directly compared. However, differences across
communities within surveys help to highlight geographic differences in flooding incidence over time.

The periods with the highest shares of communities with any flooding reported are in 2022 and
2024, consistent with these being the periods with the worst reported floods over this timeframe
(Table 2). A stunning 86% of communities in the ENSA survey have at least one households re-
porting a flood shock in 2024, much higher than the previous high of 61% of communities in 2022.
Nearly half (46.5%) of all ENSA households surveyed reported a flood shock in 2024, compared
to less than a third (31.3%) in 2022 and just 5% in 2023. Consistent with government and media
reports that flooding began earlier than usual in 2024, the DIEM surveys show that 21% of com-
munities experienced floods from May to September of 2024 compared to 18% from October 2024
to February of 2025. In contrast, in 2022 just 5% of communities were exposed to flooding from
May to September compared to 37% from September 2022 to January of 2023.

An important takeaway of the household flooding reports is that the share of communities
where any flooding is reported greatly exceeds the share of households reporting a flood shock.
One reason for this is that survey questions about floods are generally included in a module about
adverse shocks experienced by the households, and ask households whether they were harmed by
floods and not simply whether any flooding occurred. Not all households are adversely affected when
a flood occurs in their community, either because they live in a different part of the community
from where floods occurred or because they were otherwise less exposed to or better protected
from flood damages. Another possibility is survey measurement issues. For example, in some
cases (such as the ENSA surveys) households can only report one primary shock experienced over
the past 6 months, and in some cases floods may not be the most important shock a household
has experienced. Regardless of the reason, we find more widespread flooding across communities
than across households. Community-level flood exposure therefore will have different effects on
households depending on their own specific exposure.

A particularly useful source of survey flood reports is the Enquéte Nationale sur la Sécurité
Alimentaire (ENSA). This survey is conducted annually in Chad by the Ministry of Agriculture
and Irrigation and Systéme d’Information sur la Sécurité Alimentaire et I’ Alerte Précoce (SISAAP),
in collaboration with FEWSNET, the FAO, and the World Food Programme. The data for these
surveys is not publicly available but we obtained data for 2016-2024 from SISAAP, including com-
munity coordinates for the years 2020-2024. The survey sample is an annual cross-section that is
representative of rural populations in each region. It therefore does not include the urban areas
with the highest population exposure and vulnerability to flooding but provides a valuable source
of data on annual flooding experiences across the country. The objective of the survey is to track
measures of food security across the country but the questionnaires cover a wide variety of topics
including household shocks. Respondents are asked whether they experienced any adverse shocks
in the past 6 months and, if yes, to name the primary shock they experienced, which may be a
flood.
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In most years data can only be consistently mapped at the departement level, so we start by
calculating the share of households reporting a flood shock by departement each year. Figure 10
summarizes this information by mapping the count of years in which this share exceeded 5% (Panel
A) and 25% (Panel B), by departement. We also show annual maps of the share of households
reporting any flooding at the departement level in Figure A16 and at the community level for
2020-2024 Figure A17.

Panel A of Figure 10 shows that every departement has at least 5% of households reporting
flooding in at least one year during this period, largely because of the very widespread exposure—
even in the northern departements which otherwise typically report no or very low flooding—in
2024 (Figure A16). But it is clear that flood exposure is a more regular occurrence in southern
Chad and in particular departements. Of the nine years from 2016-2024, eleven departements have
at least 5% of households reporting a flood shock in six separate years (Abtouyour, Bahr Azoum,
Bahr Sara, Djode, Guera, Kimiti, Kouh Est, La Pende, Mangalme, Tandjile Centre, and Tandjile
Ouest), four have this level of exposure in seven years (Grande Sido, Gueni, Mamdi, and Mandoul
Occidental), and one has this level of exposure in eight of the nine years (Bahr Koh). Low levels

of flood exposure are therefore very common in many parts of Chad in the past decade.

Figure 10: Summary of flood exposure in ENSA surveys, 2016-2024
A) Years with =5% of HHs reporting a flood B) Years with >25% of HHs reporting a flood
I No surveys 1 No surveys

6+ B+

Flooding years
Flooding years

Note: Authors’ calculations based on data from the ENSA surveys. The data are from a nationally-representative sample of
rural households about flooding experienced in the 6 months prior to the survey date. Geographic identification is not available
below the admin?2 level for all years, so we show the share of households reporting any flooding by departement. In each year,
we determine whether this share exceeded 5% (panel A) and 25% (panel B), and then visualize the number of years with this
level of flood exposure in the departement.

Panel B shows that higher flood exposure events are less common, but 60 of 70 departements
have at least one year with more than 25% of survey households reporting a flood shock. Again,

much of this is driven by 2024, when high exposure to floods was widespread across a much larger
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part of the country than even in 2022 or 2020 as shown in Table 4. Thirty-five of seventy departe-
ments have more than one year with this high level of flood exposure, which is primarily due to the
major flood events in 2020, 2022, and 2024. Six departements have experienced four separate years
with more than 25% of survey households reporting a flood shock: Bahr Koh, Bahr Sara, Chari,
Guera, Mandoul Occidental, and Tandjile Centre.

It is important to highlight here that the household sample for the ENSA only includes rural
populations, so these results should not be taken as a definitive indicator of the areas with the
highest risk of flood exposure in Chad. The urban areas with high exposure might be in other
departements which could change conclusions about what areas are most exposed. The Resilience
Index Measurement and Analysis (RIMA) survey was conducted in 2014 and also targets rural
populations, and reveals little flood exposure in this year (Figure A19 Panel A).!Y The DIEM and
ECOSIT surveys include urban as well as rural populations, allowing some comparison with the
ENSA survey reports, although their coverage and flood-related questions differ from the ENSA
surveys.

The Data in Emergencies Monitoring (DIEM) surveys have been conducted repeatedly from
2021-2025 but only in selected departements in each round.'’ With the exception of high levels of
survey flood reporting in Kanem in 2024, the provinces with higher levels of DIEM survey flood
reports generally align with the areas identified by government and media reports as having larger
affected populations in 2022 and 2024 (Figure A15) We do not observe any consistent pattern
in comparing the share of households reporting floods at the departement level by year between
the DIEM surveys (Figure A18) and the ENSA surveys (Figure A16). At a high level reported
flooding incidence is similar but across years, we observe some departements with similar shares
of households reporting floods, some with higher shares in DIEM, and some with higher shares in
ENSA. Based on this, it is unclear whether flood exposure is typically higher or lower among urban
households.

The Enquéte sur les Conditions de vie des Ménages et la Pauvreté au Tchad (ECOSIT) surveys
are nationally-representative surveys and are conducted by the National Institute for Statistics,
Economic and Demographic Studies of Chad (INSEED) with support from the World Bank, with
the aim of generating updated indicators on poverty and living conditions. We received community

coordinates from the INSEED team to allow precise geographic mapping of flooding incidence

The RIMA survey was conducted in 2014 by the FAO together with Chad’s Ministry of Agriculture and Irrigation
using the same sampling and similar methods as the ENSA. The relevant period for recalling flood shocks covers
April-October 2014, which was not a period of major flooding in Chad.

" The DIEM survey, led by the FAO, has been conducted around twice per year since November 2021, with seven
rounds of data available as of May 2025 (round 1 is not publicly available). Designed as a rapid-response monitoring
system, each round of the DIEM targets specific departements based on recent exposure to shocks and collects data
on livelihoods, food security, and vulnerability to shocks for a representative sample of households. Although its
geographic coverage is limited and locations can only be identified at the departement level, the survey allows for
high-frequency monitoring of household conditions in vulnerable areas. In the survey shocks module, households are
asked whether they or the community experienced flood or riverbank erosion that affected their ability to raise an
income or produce food in the past three months. The timing of the surveys is designed so that one round each year
takes place around the beginning of the high flood risk season and the second round takes place shortly after this
season.
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during ECOSIT rounds 4 and 5, conducted in 2018-19 and 2021-22, respectively. In the survey,
respondents are asked whether they were adversely affected by a variety of shocks over the past
three years, including flooding. Reports of flood exposure therefore cover a long time period.

The recall period for ECOSIT 4—June 2015-April 2019—does not overlap with any major
flooding events in Chad but 10% of households report experiencing a flood over this time period.
These are spread across a large number of communities such that around half of communities include
at least one household reporting any flood shock. The recall period for ECOSIT 5—January 2019-
December 2022—overlaps with several years of severe flooding across Chad, yet we still observe
around 10% of households reporting a flood shock in this period, and a similar share of communities
as in ECOSIT 4. Most surprising is that the share of communities with any reported flooding is
actually lower in the second wave of ECOSIT 5 than the first, even though the major flood disaster
of 2022 happened in between these waves. These results suggest household recall errors which may
be related to the long recall periods in the ECOSIT shock modules.

Figure 11 maps the share of households reporting any flood exposure by departement in each
round. Forty departements have at least 5% of households reporting a flood over the 4 year period
from 2015-2018, compared to just 24 in the ENSA surveys for the same period. Two departements
have more than 25% of ECOSIT households reporting flooding over this period, Haraze Al Biar
and Gueni, but these are not the same as the three departments with similarly high shares of
ENSA flood reports: Bahr Sara, Kouh Est, and Mandoul Occidental. Forty departements also
have more than 5% of households reporting any flooding during the 4 year period from 2019-2022,
though these are not the same departements as for the 2015-2018 period. This compares to 57
departements according to the ENSA data. Five departements have more than 25% of ECOSIT
households reporting flooding over this period, Fitri, Tandjile Centre, La Pende, Kouh Est, and
Bahr Koh. In contrast, there are 40 departements with at least this level of flood reports in the
ENSA surveys over this period, though these include all five of those highlighted by the ECOSIT
data.

Overall, the ECOSIT survey flood reports do not align well with the timing of major flood
events over the same time period or with the ENSA survey data. Part of the difference between
ECOSIT and ENSA may reflect the inclusion of urban households in the ECOSIT data, but higher
flood reports over a low-flooding period and lower flood reports over a high-flooding period are
difficult to explain by sampling differences. Instead, this suggest differences due to how the flooding
questions were asked, and potentially to challenges with accurately recalling exposure over such
a long period (three years). These conclusions motivate a decision to consider remotely-sensed
flooding incidence alongside than survey-reported incidence for the analysis of impacts of flood
exposure in the ECOSIT data in the next section of this report.

In summary, the survey reports of household-level flood experiences offer three important in-
sights. First, households are more likely to report being affected by a flood in regions with higher
flooding hazard and exposure risk according to data from Fathom (2022) and Rogers et al. (2025).

This indicates that the models used in these sources are indeed reflecting true variation in flood risk.
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Figure 11: Flood exposure in ECOSIT surveys, 2015-2022
ECOSIT 4 (2015-2018 recall) ECOSIT 5 (2019-2022 recall)
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Note: Authors’ calculations based on data from the ECOSIT surveys. The data are from a nationally-representative sample
of households about flooding experienced in the 6 months prior to the survey date. Geographic identification is not available
below the admin2 level for all years, so we show the share of households reporting any flooding by departement. In each year,
we determine whether this share exceeded 5% (panel A) and 25% (panel B), and then visualize the number of years with this
level of flood exposure in the departement.

Second, a low but non-trivial share of households report experiencing flood shocks outside years of
major flood events in Chad. These events are primarily concentrated in the same areas at higher
risk of severe floods. This recurring flood risk implies that flood monitoring and response efforts
focused on major floods may miss many important more local or less severe floods that nevertheless
adversely affect households. Third, there is substantial variation in household flooding exposure
within communities, with many households in communities exposed to floods not reporting any
damages or losses.

We explore the correlates of this within-community variation using data from the ECOSIT and
ENSA surveys. In ECOSIT 4, just over 10% of households reported being affected by a flood from
2015-2018. Households engaged in any agricultural activity are 3 percentage points (pp) more likely
to report a flood shock, while households with a cement or metal roof (as opposed to straw, leaves,
fabric, or other materials) and with a cement or tile floor (primarily as opposed to earth) are 2
and 5 pp less likely to report a flood shock, respectively (Table 5). Households with more members
are also more likely to report a flood shock, potentially because this increases the number of ways
in which a household could be affected by flooding. Characteristics of the household head (age,
religion, and literacy) and dwelling ownership are not correlated with flood reports.

In the ENSA surveys of rural households from 2016-2024, 17% of households report being
affected by a flood over the past 6 months on average. As in the ECOSIT sample, being engaged

in agriculture increases the probability of reporting a flood shock (by 8 pp) and having a cement
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Table 5: Correlates of ECOSIT 4 household flood reports

M (2) ®3)

Rural location -0.017*
(0.006)
Any HH crop or livestock 0.012 0.032*** 0.071***
activity (0.009) (0.011) (0.023)
Household size 0.003** 0.002 0.005"
(0.001) (0.001) (0.002)
Household head is female -0.003 -0.003 -0.006
(0.008) (0.009) (0.018)
Household head is Muslim 0.001 0.020 0.043
(0.006) (0.015) (0.031)
Household head is literate 0.003 0.002 0.003
(0.009)  (0.010) (0.019)
Household head completed 0.004 0.005 0.007
primary school (0.010) (0.011) (0.021)
Household owns its dwelling -0.015 -0.005 -0.008
(0.009)  (0.011) (0.020)
Roof is cement or metal -0.006 -0.024™ -0.054**
(0.009) (0.011) (0.023)
Floor is tile or cement -0.045"**  -0.055"** -0.089***
(0.011) (0.013) (0.022)
Main source of light is 0.005 -0.004 -0.011
electricity (0.012) (0.015) (0.026)
Household has toilet or -0.004 -0.020 -0.036
latrine (0.010) (0.013) (0.024)
Count of other HHs in comm.  0.064***
reporting flood (0.003)
Observations 7493 7493 3718
Mean, HH reported flood 0.101 0.101 0.203
Community FE No Yes Yes
Wave FE Yes Yes Yes
Any comm.
Sample All All flood rept.

Note: Authors’ calculations based on data from the ECOSIT 4 surveys. The table shows the results of separate regressions where
the outcome variable is a dummy for whether the household reported experiencing a flood shock from 2015-2018. Communities
typically include around 12 households in the survey sample. The count of other households reporting a flood is calculating by
taking the sum of household flood reports and subtracting the household’s own report. * p < 0.1, ** p < 0.05, *** p < 0.01

or metal roof—floor material is not recorded in the surveys—decreases it (by 1 pp). Household
size is again positively associated with flood reports, and we also find small significant positive
relationships between having a female and literate household head and the probability of reporting
a flood (Table 6).

In both samples, the magnitudes of the relationships are larger within communities where any
flood shock is reported, indicating that household characteristics can explain much of the variation
in within-community flood exposure we observe in Table 4. Together, results show that, as would
be expected, households more vulnerable to damages from flooding—those engaged in agricultural

production and those with less durable dwellings—are more likely to report a flood shock.
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Table 6: Correlates of ENSA household flood reports

) () (3)

Any HH crop or livestock 0.071***  0.079*** 0.173***
activity (0.004) (0.006) (0.011)
Household size 0.002*** 0.001*** 0.003***
(0.000) (0.000) (0.001)
Household head is female 0.008***  0.009*** 0.020%**
(0.003) (0.003) (0.006)
Household head is literate 0.014™**  0.012** 0.029"*
(0.002) (0.002) (0.006)
Roof is cement or metal -0.002 -0.012*** -0.023***
(0.003)  (0.004) (0.007)
Household has toilet or -0.000 -0.002 -0.004
latrine (0.003) (0.003) (0.007)
Count of other HHs in comm.  0.060***
reporting flood (0.001)
Observations 107010 106273 43095
Mean, HH reported flood 0.171 0.171 0.423
Community FE No Yes Yes
Year FE Yes Yes Yes
Any comm.
Sample All All flood rept.

Note: Authors’ calculations based on data from the ENSA surveys from 2016-2024. The table shows the results of separate
regressions where the outcome variable is a dummy for whether the household reported experiencing a flood shock in the past
6 months. Communities typically include around 12 households in the survey sample. The count of other households reporting
a flood is calculating by taking the sum of household flood reports and subtracting the household’s own report. * p < 0.1, **
p < 0.05, ¥** p < 0.01

3.2 Remotely-sensed flood incidence

The most promising data source for identifying flood incidence at a high temporal and geographic
resolution in recent years is remotely-sensed data, and in particular satellite imagery and radar. In
this section we briefly discuss how flooding is detected by satellite sources, present and compare
different remotely-sensed flood monitoring databases, provide guidance for near real-time flood
monitoring, and present data on annual flooding in Chad from 2012-2024 using data from the
NOAA/GMU VIIRS Flood Mapping archive.

Satellites carry sensors that measure signals emitted from Earth, which can be used to detect
the presence and characteristics of surface water. Satellite imagery, as collected by the MODIS and
VIIRS optical sensors for example, can identify water based on differences in what wavelengths are
reflected or absorbed by water. Satellite synthetic aperture radar (SAR), as collected by Sentinel-1
for example, can identify water based on differences in radar backscatter patterns. After detect-
ing water and accounting for errors due to cloud cover, terrain shadow, and elevation, different
algorithms are used to determine whether water observed in a particular place and time represents
flooding. These typically involve comparing detected water to data on locations of permanent
water. Appendix D provides more data on how satellite data may be used for flood detection.

Flood detection by satellite is based on specific algorithms meaning it is not subject to reporting
errors and can be particularly valuable in contexts where no survey reports are available. But there

are also several important limitations to satellite-based flood detection. First, satellite optical
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imagery generally has shorter revisit periods on average but is constrained by cloud cover, while
satellite radar is not affected by clouds but has longer intervals of days between data collection.
These limitations mean satellites may miss fast-moving or short-duration floods as well as floods
occurring under clouds, implying a reduced likelihood of capturing pluvial foods in particular.
Second, flood detection algorithms may be biased based on how the algorithm is developed, for
example by not accounting for seasonal fluctuations in water cover or from inaccurate elevation
data. Differences in data availability and algorithms mean that maps of flooding incidence for a
given time and place can vary substantially across different flood monitoring databases. Third,
satellite-based measures can have difficulty identifying floods in urban areas, under tree canopies,
and in arid areas leading to potential false positive detections as well as flooding that is not detected.

For these reasons, satellite-based sources should not be considered as definitive measures of
flooding incidence, particularly at very specific points in time and space. At a more aggregate level,
however, they are very useful in identifying and monitoring areas where floods are determined to

be very likely to be occurring.

3.2.1 Near real-time flood monitoring

While it is possible to estimate flooding incidence directly from raw satellite data,'? many publicly-
accessible databases now provide near real-time (NRT) monitoring of flood incidence globally,
relying on different satellites and algorithms.'® We reviewed these databases in order to identify
one that we could access and use to analyze recent historical trends in flooding incidence across
Chad. Table 7 provides a summary of a selection of flood databases that allow online viewing of
NRT flood detection. Table A2 provides additional detail on these datases along with other public
flood event databases that record a subset of past major global flood events typically with very
limited spatial resolution. We do not include flood forecasting services such as GloFAS, which can
provide early warning of locations at heightened risk of flooding (see Kar et al. (2024) for a review
of selected flood forecasting and detecting data sources and how they can be combined for flood
monitoring).

These NRT databases could each potentially be useful for monitoring and responding to real-
time flooding events in Chad, but we would recommend using databases that allow users to down-

load data from recent days and that represent different approaches to flood mapping and sources of

2For example, we followed the methods described in Tripathy and Malladi (2022)’s Global Flood Mapper interface
to attempt to detect flooding in Chad in recent years using Sentinel-1 SAR data in Google Earth Engine, but the
algorithm is tailored to identifying specific floods at specific points in space and time. As such it is not well-suited
to the task of identifying all floods over a large geographic area over a large timeframe, which is the objective in
estimating annual flood incidence in Chad. This limitation holds for many other methods for directly estimating
flooding incidence as well, and while it is possible to revise these methods for our task it is very computationally-
intensive and requires many subjective decisions in refining the algorithm. We therefore prefer to rely on flood
detection methods used in existing flooding databases. These methods also typically bring incorporate various error
correction steps that are difficult to replicate.

13Schumann et al. (2018) reviews databases available as of 2018 and provides additional information on many of
the same databases we identify though the information in their review is no longer up to date. A number of public
and private organizations also provide flood detection and monitoring services for a fee, or otherwise have flood
monitoring data that they do not make publicly available.

30



Table 7: Overview of NRT Flood Databases

Database Data Years of cover- | Spatial Temporal Accessibility

age resolu- resolution

tion

VIIRS Flood Mapping | VIIRS imagery 2012-present 375 m 1/5 day | Publicly available
(VFM) composites | archive
GloFAS Global Flood | Sentinel-1 SAR 2021-present 20 m 6-12 days Web portal/API with
Monitoring (GFM) download restrictions
Global Flood Monitoring | TRMM/ GPM precipi- | 2013-present 12 km Daily Publicly available
System (GFMS) tation archive
Near Real-Time (NRT) | MODIS imagery 2011-2022 250 m 1/2/3 day | Web portal for last 8
Global Flood Product (legacy); composites | days

2021-present

(current)
African Flood and Drought | Precipitation gauges | 2008-present 5 km Daily Web portal viewing
Monitor + satellite-derived but not downloading

precipitation
Automated Disaster Anal- | VIIRS, MODIS, and | post 2018- | Atleast | Unclear Web portal viewing
ysis and Mapping (ADAM) | Sentinel-1 satellites, | present 375 m but not downloading
Floods Floodscan
FloodScan Satellite  microwaves | 1998-present 90 m Daily Web portal viewing
and imagery but not downloading

Note: Authors’ summary based on information provided by each source. Table A2 provides additional detail.

data. In particular, the NASA NRT product, the NOAA/George Mason University VIIRS Flood
Mapping (VFM) product, and the Copernicus Emergency Management Service Global Flood Moni-
toring (GFM) product provide data at a relatively high spatial resolution and use different satellites
(MODIS imagery, VIIRS imagery, and Sentinel-1 SAR respectively) for a multi-faceted detection
of flooding. We note that the longer flyover periods for Sentinel-1 imply that data for the GFM
product at a given point in space will not be updated as frequently as data for the databases using
optical satellites, but this data source will not be constrained by cloud cover.

An approach that considers these three NRT flood databases would likely be most robust.
Combining and comparing results would reduce the number of flood events that are not detected as
well as potentially reduce the number of incorrectly identified flood events. The NASA /University
of Maryland Global Flood Monitoring System (GFMS) could additionally complement these data
sources to identify potential pluvial flooding as its algorithm uses satellite-detected rainfall with a
hydrological model. We would not recommend this data as a primary source for identifying flooding
as the resolution of the data is coarse (12km) and this method may be more likely to incorrectly
detect flood events due to issues detecting extreme precipitation events using satellite-derived data.

The World Food Programme’s Advanced Disaster Analysis and Mapping (ADAM) tool follows
a similar approach for NRT monitoring of floods that has been applied to tracking the incidence of
the 2022 and 2024 floods in Chad. The ADAM tool combines raw data from the VIIRS, MODIS,
and Sentinel-1 satellites together with estimates from Floodscan to estimate flooding extent. An
approach that scrapes data from the NASA NRT product, VEM product, and GFM product would

incorporate data from the same satellites but with the advantage of leveraging the rigorous error
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detection and correction methods of each product’s algorithms. A conservative method would be
to identify flooding based on the maximum of flood detection across all three sources. Overlaying
these data on maps of cropland and population density—as done in WFP flood bulletins for Chad
using ADAM data (for example, WFP, 2024b)—could help targeting flood response.

3.2.2 Mapping historical flood incidence

The key considerations in choosing a database for mapping historical flood incidence in Chad are
data accessibility and consistency, temporal coverage (the ability to retrieve data from as many
years as possible), spatial resolution, and algorithm quality. The first two criteria are the most
binding when moving from real-time monitoring to historical analysis.

We eliminated the NASA NRT Global Flood Mapping product, African Flood and Drought
Monitor, Advanced Disaster Analysis and Mapping (ADAM) tool, and FloodScan from considera-
tion because of restrictions in accessing historical flooding data.'* We identify three databases with
archived flood mapping data available to download. The NASA /University of Maryland GFMS
has public archived daily data going back to 2013,'® but as discussed above the data are at a
relatively coarse resolution (around 12 km) and are based on satellite precipitation data which has
been shown to be less accurate for identifying inundation. The Copernicus Emergency Manage-
ment Service GFM tool has the joint advantages of being very high resolution (20 m) and based
on radar data which can detect floods at night and in cloudy conditions. The main drawbacks are
that the return period is 6-12 days, meaning this source will fail to detect floods of short duration
unless they coincide with the satellite overpass. Data access also begins only in 2021 and we faced
challenges accessing and processing historical data through the API, though this constraint should
be reduced for real-time monitoring.

We determined that the NOAA /George Mason University VEM product archive (Li et al.,
2018; NOAA and George Mason University, 2025) is the best option for conducting an analysis of
historical flooding in Chad. It is moderately high resolution (375 m) and available at daily intervals
starting in 2012, though for reasons we do not understand there are no data available for 2021 and
2022. This database uses VIIRS satellite imagery, so the main drawback is that the floods that
can be detected are constrained by cloud cover. We use the 5-day product which interpolates data

from nearby cloud-free observations to help address this limitation, but this source will still miss

!4The NASA NRT Global Flood Mapping product has been commonly used in empirical research but no longer
provides public access to its archive. While historical flood maps can be viewed on the online portal, only data for the
last 8 days can be downloaded for analysis. We requested additional data but received only three months of archived
maps, which is insufficient for historical mapping. The African Flood and Drought Monitor only allows viewing but
not downloading of data for the current date and the past one month. The World Food Programme’s ADAM tool
has been used for flood monitoring in Chad by the WFP and other organizations, but while live data can be viewed
in the online portal there is no public way to access historical records. FloodScan similarly allows viewing of the live
map but historical records are only accessible for a fee which depends on the amount of data requested.

15The archive includes links to data going back to 2001 but access is restricted so it is unclear how these data may
be obtained.

The very high resolution of the data made extracting and compiling a database of GFM records even for
N’Djamena alone computationally challenging.
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inundation caused by heavy rainfall that does not persist until the next cloud-free flyover. It is also
lower resolution than the radar-based Copernicus GFM, but it has a much more frequent flyover
period which is an advantage for capturing short-duration floods. Tests of the VFM method show
that under clear-sky coverage its maps are consistent with radar flood products overall, and that
it is better at detecting floods on land with vegetation cover and less likely to falsely detect floods
on barren land than radar-based methods (Li and Sun, 2021).

Data from the VEM archive identify each pixel as either land, permanent water, or flooded to
an extent defined as the share of the 375 m pixel where flooding is detected each day.!” To analyze
historical flooding incidence in Chad, we aggregate these data to the annual level by taking the
sum of days with any flooding to create a continuous measure of flooding incidence. Annual days of
flooding can serve as a simple measure of flood duration and intensity that is useful for identifying
areas potentially most affected.

We consider pixels with over 150 days of detected flooding in a majority of years to be pixels
with seasonal “recurring water,” a situation which is not accounted for in the VFM flood detection
algorithm but which is distinct from floods as there expected seasonal fluctuations. These areas
are primarily located around Lake Chad and to a lesser extent Lake Fitri, and separate out these
pixels from the representation of flooding incidence in the following analyses. Across all of Chad’s
approximately 15 million 375 m pixels, 0.23% are classified as permanent water and 0.12% are
classified as recurring water; the remaining 99.65% are land.

We first present data on the mean and standard deviation of the annual days of flooding at
the pixel level across Chad for the 2012-2024 period. Figure 12 maps out the spatial distribution
of these values across Chad (top row) and shows the cumulative distribution of values across all
pixels (bottom row). The top row shows that flooding is largely concentrated in the south of the
country around lakes and rivers (Figure A2), reflecting the high risk from fluvial floods. The areas
with the highest mean days of flood exposure are located in close proximity to these water bodies,
particularly around Lakes Chad, Fitri, and Iro, between the Chari and Logone rivers near northern
Cameroon, and further south along the Logone river. Outside of these areas it is rare for the mean
annual days of detected flooding to exceed 40, but in these areas it can reach over 100. Flooding is
also detected in the more arid north of the country, around seasonal wadis, and in many scattered
pixels. This could reflect detection of pluvial floods but may also indicate false positives, such as
small oases not included in permanent water maps or inaccurately classified bare earth.

The areas in Figure 12 with regular flooding detected align well with the areas indicated in
Figure 1 and Figure 2 as having higher flooding hazard. Across all land pixels in Chad, almost
exactly 10% have at least one day of detected flooding from 2012-2014. This implies that the large
majority of Chad’s area faced limited flooding hazard. This result also supports the conclusion
from Fathom (2022) and Rogers et al. (2025) showing that fluvial flooding is a relatively much

more important driver of flood hazard in Chad than pluvial flooding, though one potential reason

17"The share of the pixel that is flooded is measured by comparing reflectance of different bands of light in mixed
land/water pixels compared to otherwise similar pure land or pure water pixels. We consider a pixel to be flooded if
there is any flooding detected in the pixel.
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Figure 12: Estimated annual days of pixel flood exposure, 2012-2024
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for this is that short-duration pluvial floods masked by clouds cannot be detected by VIIRS imagery
used in the VFM archive meaning fluvial floods are more likely to be detected.

Among the 10% of land pixels with flooding detected in at least one year from 2012-2024, the
median number of days of annual mean flooding is 7.5, and the mean is 15.3. Close to 40% of
these cells are flooded an average of 5 days annually. In some cases this reflects a single satellite
image with flooding detected, as we use the 5-day VFM product which smooths detection across
five day periods to account for missing data due to cloud cover. The 75th percentile for mean
annual flooding days is 16 days, the 90th percentile is 34 days, and the 95th percentile is 51.6 days.

The pixels with values above the 90th percentile are almost exclusively in the areas near lakes and

34



rivers identified above.

The map of the standard deviation of annual flooding days shows that higher deviations are
typically in the same areas where we observe higher means. A higher standard deviation implies
more variation from year to year, and therefore a greater likelihood that the VFM-detected flooding
represents a true inundation shock in a local area. Higher standard deviations in areas with higher
means imply that the high means are driven by some years with very many flooding days and some
years with few. Among pixels with any detected flooding, the 25th percentile is 3.0 days, driven
largely by limited variation in many of the cells with low mean annual flooding days. But the mean
standard deviation is 12.6 and the 75th percentile is 16.4 days, however, indicating that a large
number of pixels experience important fluctuation in flooding incidence as detected by the VFM.

To clearly identify the variation in flooding days detected over time, we calculate normalized
deviations in each year by subtracting mean days of flooding over all other years from 2012-2024
and then dividing by the standard deviation of days of flooding over that period. The resulting
units are standard deviations of days of flooding away from the mean for each pixel, where large
positive values indicating unusually high days of flooding in the current year relative to the average
across other years, and large negative values indicating unusually low days of flooding. Pixels with
a standard deviation of 0 days of flooding outside the current year are assigned a value of 0 unless
they have more than 5 days of flooding in the current year, in which case they are assigned a value
of 10 in recognition that this is a highly unusual location to detect flooding.

Figure A20 presents maps of annual normalized deviations in flooding days each year from
2012-2024, except for 2021 and 2022 where no data are available. To focus attention on higher
than usual flooding incidence, we mask all pixels with fewer flooding days in the given year than
usual. We present all pixels with small positive deviations in flooding days—between 0 and 1 stan-
dard deviations more than the average in other years—in green and pixels with larger deviations,
representing really unusually high levels of detected flooding, in red. The patterns clearly line up
with expectations based on the timing of the most severe reported floods in Chad over this time
period. By far the largest concentration of red pixels, with much higher days of flood detection
than in other years, is in 2024, the year of the worst recorded floods in Chad’s history. The next
largest concentrations is in 2020, followed by 2019, 2018, and 2012, all years of widespread reported
flooding. These are also the years with the highest peak average monthly water flows through
DRE hydrological stations among all years with VFM data available (Figure A12). All other years
include small numbers of scattered pixels with higher than average numbers of detected flood days,
with relatively more green than red. These may represent either isolated flooding events or incor-
rectly identified floods. The results for 2024 would likely be less striking if data for 2021 and 2022
were available, as the deviations in 2024 would be less extreme when comparing against those other
two years of severe widespread flooding, but in general this method of identifying severe floods
aligns with expectations.

We show maps of the raw days of annual flood exposure over space by year in Figure A20. The

pattern of the maps is similar to what we show in Figure 13 but the differences across years are
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Figure 13:
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Note: Authors’ calculations based on data from the VFM archive, NOAA and George Mason University (2025). We aggregate
daily flood detection maps across the year, taking the sum of days in the year with any flooding detected for each pixel. The
figure shows Z-scores for the difference in these pixel-level annual days of detected flooding detected in a given year compared
to the mean for all other years from 2012-2024, normalized by the standard deviation in flooding days over the same period.
Larger Z-scores indicate significantly more flooding days in a given pixel in a given year relative to previous years. Negative
values indicate significantly less detected flooding. Data for 2021 and 2022 are not available.

less stark as most years include large numbers of pixels with 10 or fewer days of detected flooding.

These areas are largely concentrated in Tandjilé and Salamat provinces, which are also some of the

areas with the lowest mean and standard deviation of annual flooded days in Figure 12. We observe

that some flooding is detected across the northern half of Chad in every year, typically occurring in
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the same areas of Tibesti province. The affected pixels typically have 10 or fewer days of detected
floods and are far from rivers, suggesting these are pluvial floods. A few pixels with high days of
detected water across years likely reflect some of the scattered oases in this desert area, many of
which we identify as areas with recurring water coverage. Figure A22 presents the share of each
departement where any flooding is detected in each year.

At least 2.0% of land pixels have some flooding detected in every year. This share does not
exceed 2.5% from 2013 to 2017, where the only areas with more than 10 days of flooding detected
are around Lake Chad, south of N'Djamena between the Chari and Logone rivers, and southwest
of Lake Iro. In 2023, 2.9% of pixels are identified as flooded while in 2012, 2018, and 2019 the share
is between 3.3 and 3.9%. The highest shares of flooded pixels are in 2020 and 2024, with 4.8%
and 6.3% of land cells identified as flooded respectively. The areas with higher days of flooding on
these maps correspond to the green and red areas in Figure 13, though it is notable that in 2024
there are simply more pixels experiencing flooding than ever before. Even though many of these
pixels are only flooded for 5 or 10 days, these represent very large deviations because no flooding
is detected in these pixels in other years.

The distribution of the number of days of flooding among flooded cells is fairly similar across
years, with medians around 10 days and means around 20 days (Figure A21). The 25th percentile
in all years is 5 days and the median only exceeds 10 days in 2020 (11 days) and 2024 (16 days).
The mean only reaches or exceeds 25 days in 2012 (25.3), 2019 (25.0), 2020 (25.4), and 2024 (33.4).
More differences are observed at the higher end of the distribution, as in 2013-2018 and in 2023
the 75th percentile is below 26 days of flooding detected and the 90th percentile is below 60 days.
These thresholds are slightly exceeded in 2012, 2019, and 2020, but in 2024 the 75th percentile is
43 days and the 90th percentile is 79 days. These results highlight how the floods in 2024 were

extreme in terms of both the size of the area affected and in the duration of the floods.

3.2.3 Population exposure to detected flooding

We combine the VEM data with population data from WorldPop (2025) to analyze population
exposure to detected flooding. Large portions of Chad are unpopulated, and the median population
density even among populated cells is just 2.66 people per km?. Much of the flooding detected in
the VFM data may therefore have limited human effects. To identify areas with the greatest average
population exposure to floods, we identify all pixels where the population density exceeds 50 and
100 people per km?, or roughly the 94th and 98th percentiles of the distribution. There areas are
almost exclusively in the southern half of Chad, and primarily in the western and southwestern
provinces.

Figure 14 presents maps of mean annual days of detected flooding at the pixel level from 2012-
2024, as shown in Figure 12, but restricted to these more populated areas. The results show that the
main areas with high population density (for Chad) and high average exposure to detected flooding
are along the Logone river in western parts of Hadjer-Lamis and Chari-Baguirimi provinces and in

N’Djamena, Mayo-Kebbi Est, Tandjile, and Logone Oriental. Lowering the population threshold
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to 50 people per km?, we identify additional areas of high exposure to the east of Lakes Chad and
Fitri, along the river Chari in Chari-Baguirmi, and in Mandoul, Moyen-Chari, and Sila, with more
scattered exposure in other southern provinces. The areas combining the highest mean days of
annual flooding detected (in orange and red) together with higher population densities are largely

all concentrated in the areas around the Logone River.

Figure 14: Areas of high population exposure to VFM-detected flooding
A) Mean annual flooding days, B) Mean annual flooding days,
>= 50 people per km? >= 100 people per km?
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Note: Authors’ calculations based on data from the VEM archive NOAA and George Mason University (2025) and WorldPop
(2025). The figure presents the mean annual days of flooding data presented in Figure 12, but restricted to areas with at least
50 (Panel A) or 100 (Panel B) people per km? in 2020 according to WorldPop gridded data.

Next, we combine WorldPop population data with annual flood detection data to estimate
the population exposed to satellite-detected flooding each year, without no filtering by population
density.'® We define every 1 km pixel in the WorldPop data as exposed to flooding in a given year
if there is any flooding detected in any overlapping 375 m pixel in the VFM data, and take the sum
of population exposure at the departement and national levels.

Figure 15 shows the estimated total population exposed to floods in each year from 2012-2024.
The results align fairly well with reported numbers of affected persons during major flood disasters
(Table 2), with 2.4 million people classified as exposed in 2024, 1.7 million in 2020, 1.5 million in
2019, and 1.4 million in 2012. The numbers are not directly comparable, however, as many people
may be exposed to flooding without being affected and indeed we find higher levels of exposed
persons than are reported as affected in every year. The gap between the number exposed and

reported as affected is smallest in 2024. This could reflect the fact that the floods that year were

18We adjust WorldPop population data upward by scaling population in all pixels equally so that the total for all
of Chad matches the reported total population in 2020.
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much more severe than in other years, meaning flood exposure was more likely to adversely affect
households.

Figure 15: Annual population exposure to VFM-detected flooding
2,500
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Note: Authors’ calculations based on data from the VEM archive NOAA and George Mason University (2025) and WorldPop
(2025). The figure presents the total annual population exposed to floods detected in the VFM data. Note that data for 2021
and 2022 are not available in the VFM archive.

A relatively large population is classified as exposed to floods even outside of major flood
disasters: at least 600,000 households are identified as exposed in every year. The fact that there
is little media discussion of flood events in Chad from 2013-2018 despite such levels of exposure
could have several explanations. First, the flooding in these years was less severe in both extent
and duration, as shown in Figure 13, so the detected floods may not have been very harmful for
nearby populations. Second, some of the detected floods may have been anticipated, particularly
given the recurring nature of flooding in Chad. Floods are more likely to cause damages if the
severity is greater than is expected, as was the case in 2022 and 2024 for example. Third, it may
be that many of the people identified as exposed to floods from 2013-2018 were indeed harmed but
that these impacts were sufficiently spread out to not have attracted media attention.

We compare the estimated national annual population exposed to VFM-detected floods to the
reported of national population affected by floods, as summarized in Table 2. On average, 16% of
the estimated exposed population is reported as affected by flooding, though this includes years
where there are no reports of flood effects in Chad. In years where affected populations are reported,
they represent 29% of the estimated exposed population. In years of major flood disasters such as
2012, 2020, and 2024 (as no VFM data are available for 2022), this share increases to 48%. This
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comparison shows that floods do not affect everyone equally, in line with the survey analysis of
correlates of flood shock reports. The larger share of the population affected by more severe floods
may represent broader indirect effects of these floods, in addition to direct effects of flooding.
Figure 16 presents the mean total annual population exposed to VFM-detected flooding across
2012-2024 by departement in Chad. The highest levels of average exposure are in N’'Djamena and
Mayo-Kebbi Est. In terms of the share of population exposed to detected floods, 21 departements
have more than 10% of the population exposed annually on average, and 5 have more than 20%
population exposure: Mamdi, Mayo Boneye, Mayo Lemyé, Bahr Azoum, and Tandjilé Centre.

Table A4 presents the data on population exposure totals and shares by departement in a table.

Figure 16: Mean annual population exposure by departement
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Note: Authors’ calculations based on data from the VEM archive NOAA and George Mason University (2025) and WorldPop
(2025). The figure presents the mean total annual population (in 1000s) exposed to floods detected in the VFM data across
2012-2024 by departement. Note that data for 2021 and 2022 are not available in the VFM archive.

In general, patterns in average annual population exposure to VFM-detected floods across
departements are very similar to patterns in estimated population exposure using the Fathom and
Rogers et al. (2025) data (Figure 3, Figure 4). Another observation is that the estimated exposed
population in N'Djamena (163 thousand people, or 11% of the population, on average) may seem
somewhat low given its location in a high flood hazard zone and high population. This may reflect
challenges for satellite imagery in identifying floods in built-up urban areas, due to obstruction

by buildings, more heterogeneous surfaces, and difficulties distinguishing flooding from other dark
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surfaces such as asphalt or shadows.

3.3 Comparing flooding incidence between surveys and satellites

We compare flooding incidence as reported in household surveys to the results from the VFM
archive. In all cases, we consider all years of VFM data which overlap with the survey recall
periods. The periods considered in the VFM data can therefore be longer than those considered
by the survey respondents. For example, the ENSA surveys ask about the past 6 months, covering
the main flooding season, and we compare this to VFM data over the whole year including this 6
month period.

A visual comparison the two sources appear to be quite correlated but not perfectly aligned.
The ENSA community-level flood report maps in Figure A17 show much higher concentrations
of households reporting flood shocks in 2020 and 2024 and in much the same areas with high
deviations in annual flooding days as in Figure 13, including in many of the same parts of Northern
Chad. But it is also the case that the ENSA survey reports indicate widespread flooding in areas
and years where little flooding is identified in the VFM data, such as in Wadi Fira, Ouaddai, and
Mayo-Kebbi Ouest in 2024.

As another example of a visual discrepancy between survey flood reports and the satellite-based
flood detection, there are repeated instances of survey reports of flooding Kanem where no flooding
is typically ever detected in the VFM data. The RIMA survey shows some flooding in Kanem
in 2014 and the ECOSIT 4 survey shows some from 2015-2018 (Figure A19), while the DIEM
surveys show high levels of flood reports there in 2024 (Figure A18). The ENSA surveys show
almost no flood reports in Kanem from 2016 to 2021, but some reports in 2022 and higher levels in
2024 consistent with generally higher flood reports that year (Figure A16). The differences could
indicate pluvial flooding that is not detected by the VFM, or damages caused by heavy rainfall
that did not lead to inundation. The floods in July-September 2024 were caused by torrential rains
and in Kanem there is no river so it is less likely the floods would have remained detectable by the
VIIRS optical satellite sensor after the clouds dispersed. However, we also find no detected floods in
Kanem in 2024 when extracting data from the Copernicus Emergency Management Service GFM
tool, which is based on Sentinel-1 radar data that is not affected by cloud cover (Figure A23).
WFP bulletins on flooding Chad using ADAM also show no flooding detected in Kanem province
(Figure A14). Both of these tools could also miss short-duration pluvial floods, but government
and media reports further indicate limited population exposure to flooding in Kanem (Figure A15).

The discrepancies between survey data and satellite imagery in Kanem therefore do not neces-
sarily imply a limitation of the VFM database in particular, but rather a combination of limitations
of remotely-sensed flood detection and differences in what households may define as flooding as op-
posed to what is defined in the algorithms using satellite data. In particular, survey households
may report precipitation-related shocks that did not result in inundation as flood shocks, or report
adverse effects of disruption from more distant flooding. The surveys do not allow respondents to

distinguish between these types of shocks.
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We now analyze more systematically the relationship between survey flood reports and VFM
flood detection. For both the ECOSIT and ENSA surveys where community coordinates were
provided by INSEED and SISAAP, respectively, we use these coordinates to measure VEM-detected
flooding in the area around the communities. In particular, we aggregate data on flood detection
for each 375 m pixel within 1 km, 2 km, and 5 km of the community centroids in each year that the
VFEM data are available, to create a time series of community-level satellite-based flood detection.
We then test the correlations between an indicator for any survey flood report in the community and
both community characteristics and measures of VFM flood detection at these different radiuses
around the community, controlling for fixed departement characteristics. Effectively, we identify
what community characteristics and measures of VFM flood detection explain differences between
community flood survey reports within departements.

Looking first at results in the ECOSIT 4 survey on flood reports for the period from 2015-2018,
the first row of Table 8 shows that rural communities are around 14 percentage points less likely
to have any flood shock report. This may reflect that urban communities are often closer to rivers
than rural communities and therefore more exposed to fluvial floods. The next three rows show
that characteristics of community households—the share of households engaged in agriculture,
with cement/metal roofs, and with cement/tile floors—are not consistently associated with the
probability of any household flood report, though there is some evidence that in communities
where more households have cement or tile floors this probability is smaller. These results indicate
that although indicators of flood vulnerability explain household-level flood reports (Table 5), it
is not the case that the most vulnerable communities are more likely to have households report a
flood shock.

Columns 2-7 of the table bring in flood detection information from the VFM archive, focusing
on the total number of pixels in a given radius around the community with any flooding detected
in each year from 2015-2018, the recall period of the surveys. The pattern of results is similar if we
instead consider the total number of days that pixels are flooded in each year. Looking first at a
continuous measure of flooded pixels (column 2-4), we find that correlations with community flood
reports are generally larger in magnitude when considering a 1 km radius compared to a 2 or 5 km
radius and that the relationship varies a lot across years. Surprisingly, point estimates are negative
for VFM flood detection in 2015 and 2016, suggesting this made survey flood reports less likely
although the effects are only statistically significant for detection within a 1 km radius. The point
estimates are positive but generally not significant for floods detected in 2017. Only for 2018 and
detection within 1 and 2 km is the correlation between the number of flood pixels and community
survey reports positive, large, and strongly statistically significant. A 100% percent increase in the
number of days of flooding within 1 km of the community in 2018—quite plausible given the mean
number of flooded pixels is less than 2 out of 22—is associated with a 14 percentage point increase
in the probability of any survey flood report. This represents a 28% percent increase compared to
the mean probability of any survey flood report.

We also consider effects of being above a certain number of flooded pixels around a community
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Table 8: Correlates of ECOSIT 4 community flood reports

(1) (2) (3) (4) () (6) (7)

Rural location -0.133**  -0.142**  -0.147**  -0.157** -0.138"*  -0.147**  -0.148"*
(0.063) (0.062) (0.062) (0.063) (0.062) (0.062) (0.063)
Share of HHs engaged in 0.033 0.015 0.004 0.012 0.034 0.025 0.008
agriculture (0.132) (0.130) (0.131) (0.131) (0.131) (0.131) (0.131)
Share of HHs with cement/metal  -0.061 -0.088 -0.098 -0.105 -0.097 -0.071 -0.097
roof (0.115)  (0.113)  (0.115)  (0.115)  (0.114)  (0.114)  (0.114)
Share of HHs with cement/tile -0.234 -0.209 -0.244 -0.280" -0.232 -0.282" -0.290*
floor (0.154) (0.153) (0.153) (0.153) (0.153) (0.154) (0.154)
Log total flooded pixels in -0.071* -0.036 0.006
2015 (0.037) (0.029) (0.029)
Log total flooded pixels in -0.105*" -0.026 -0.013
2016 (0.044) (0.033) (0.030)
Log total flooded pixels in 0.068 0.037 0.059"*
2017 (0.048) (0.032) (0.028)
Log total flooded pixels in 0.137***  0.070™*~ -0.002
2018 (0.036) (0.027) (0.026)
>=10% of surrounding pixels -0.123* -0.109 -0.163"
flooded in 2015 (0.074) (0.072) (0.090)
>=10% of surrounding pixels -0.156** -0.107 -0.010
flooded in 2016 (0.078) (0.074) (0.104)
>=10% of surrounding pixels 0.128 0.114 0.216"*
flooded in 2017 (0.085) (0.087) (0.098)
>=10% of surrounding pixels 0.228***  0.190*** 0.095
flooded in 2018 (0.070) (0.065) (0.084)
Observations 625 625 625 625 625 625 625
Mean, Any reported flood 0.496 0.496 0.496 0.496 0.496 0.496 0.496
Mean, Flooded pixels 2015 1.382 1.382 1.382 1.382 1.382 1.382
Mean, Flooded pixels 2016 1.296 1.296 1.296 1.296 1.296 1.296
Mean, Flooded pixels 2017 1.376 1.376 1.376 1.376 1.376 1.376
Mean, Flooded pixels 2018 1.939 1.939 1.939 1.939 1.939 1.939
Departement FE Yes Yes Yes Yes Yes Yes Yes
Wave FE Yes Yes Yes Yes Yes Yes Yes
Flood detection buffer — 1 km 2 km 5 km 1 km 2 km 5 km

Note: Authors’ calculations based on data from the ECOSIT 4 surveys and the VFM archive. The table shows the results of
separate regressions where the outcome variable is a dummy for whether any household in the community reported experiencing
a flood shock from 2015-2018. Flood incidence data from the VFM archive are linked to the ECOSIT data based on community
centroids, and we present results linking data from pixels at various distances from these centroids. On average there are 22
land pixels within 1 km, 89 pixels within 2 km, and 553 pixels within 5 km. Wave FE are controls for whether the sample
households were surveyed in the first ECOSIT 4 wave (July-September 2018) or the second (January-April 2019). * p < 0.1,
** p <0.05, ¥** p < 0.01

in a given year, using 10% of pixels as a threshold to focus on situations with more widespread
flooding and reduce potential measurement error from situations where a single pixel may be
incorrectly categorized as flooded in the VFM archive. Columns 5-7 of Table 8 show a similar
pattern of results as with the continuous measure of flood exposure, which is expected as both sets

of variables are based on the count of flooded pixels. Within 1 km we find that having more than
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10% of surrounding pixels flooded—on average, at least 3 out of 22—in 2015 or 2016 is associated
with a decrease in the probability of any survey flood report, while being above this threshold in
2017 or 2018 is associated with an increased probability. In 2018, having more than 10% of pixels
within 1 km flooded is associated with a 23 percentage point increase in the likelihood of a flood
report.

Table 9 shows the results from aggregating VFM flood detection across years for the period
2015-2018, either by taking the maximum number of pixels with detected flooding or by taking the
sum. The table shows a clearer positive relationship between flood detection and the probability of
any household flood report in a community. The estimated magnitudes are larger when considering
the maximum detected flood extent over 2015-2018 (columns 1-3) than when considering the total
flood extent (columns 4-6). This indicates that extremes of flood exposure are more predictive of
flood shock reports than accumulated flood exposure. The coefficients are similar when considering
different bandwidths of flood detection around the community centroid. We also find similar results
when focusing only on predicting communities where at least one third of respondents report a flood
shock.

Table 9: Correlates of ECOSIT 4 community flood reports, aggregated detection over years

(1) (2) (3) (4) (5) (6)
Log max flooded pixels 0.054™*  0.047**  0.041***

2015-2018 (0.024)  (0.018) (0.015)

Log total flooded pixels 0.037**  0.038** 0.036™**
2015-2018 (0.018)  (0.015) (0.013)
Observations 625 625 625 625 625 625
Mean, Any reported flood 0.496 0.496 0.496 0.496 0.496 0.496
Departement FE Yes Yes Yes Yes Yes Yes
Wave FE Yes Yes Yes Yes Yes Yes
Flood detection buffer 1 km 2 km 5 km 1 km 2 km 5 km

Note: Authors’ calculations based on data from the ECOSIT 4 surveys and the VFM archive. The table shows the results of
separate regressions where the outcome variable is a dummy for whether any household in the community reported experiencing
a flood shock from 2015-2018. Flood incidence data from the VFM archive are linked to the ECOSIT data based on community
centroids, and we present results linking data from pixels at various distances from these centroids. On average there are 22
land pixels within 1 km, 89 pixels within 2 km, and 553 pixels within 5 km. In this table we aggregate flood detection records
for 2015-2018 by either taking the max (columns 1-3) or the sum (columns 4-6). * p < 0.1, ** p < 0.05, *** p < 0.01

In summary, the results from the ECOSIT 4 survey show that more proximate and more recent
satellite-detected flooding is a strong and significant predictor of survey flood reports. There are
limited differences by distance of detected floods from the community centroid, potentially because
similar increases in the proportion of pixels with detected flooding at different bandwidths imply
larger increases in the absolute number of flooded pixels at larger bandwidths. The negative
coefficients for flooded pixels in 2015 and 2016 can be explained by correlations in flooded pixels
over time. When estimating relationships between survey reports and flood detection in each year

separately, the coefficients on 2015 and 2016 are much closer to zero and no longer statistically
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significant, while the coefficient on 2018 remains large, positive, and significant, and the coefficient
on 2017 is marginally significant (Table A3). So it is not the case that more flood detection in 2015
or 2016 actually decreases the likelihood of a flood report, but rather that locations with flooding
identified in both these years and 2018 are less likely to report a flood. This might imply some level
of adaptation to flood risk among communities repeatedly exposed to flooding. The differences by
year also indicate recency bias in household survey recall, with much greater weight being placed
on flood realizations in the most recent years. This is a commonly documented phenomenon in
household survey collection and a function of the long recall period used in the flood shock survey
questions.

Table 10 presents results from the same analyses using data from the ENSA surveys. We include
data from the 2020, 2023, and 2024 surveys as these are the only rounds where both community
coordinates and VFM archive data are available. All sample communities are rural so we cannot
test if this is associated with flood reports, but we find no association with the share of households
engaged in agriculture. Unlike in the ECOSIT sample, more households with durable housing
materials (in this case, a cement or metal roof) is associated with a greater likelihood of any flood
report in a community, despite a negative association between durable roofs and household-level
flood reports (Table 6). This could potentially reflect a greater share of durable roofs being a proxy
for relatively more economically developed rural communities, which could be correlated with other

factors affecting flood risk.

Table 10: Correlates of ENSA community flood reports

(1) 2) 3) (4) () (6) (7)

Share of HHs engaged in -0.061 -0.028 -0.009 0.000 -0.038 -0.018 -0.003
agriculture (0.051) (0.050) (0.049) (0.048) (0.050) (0.049) (0.049)
Share of HHs with cement/metal  0.130***  0.119*** 0.122*** 0.131*** 0.116"** 0.126™*  0.141**"
roof (0.043) (0.042) (0.041) (0.040) (0.042) (0.042) (0.041)
Log total flooded pixels in 0.154™**  0.126™*  0.103***

same year (0.013) (0.008) (0.005)

>=10% of surrounding pixels 0.275***  0.330"**  0.371***
flooded in same year (0.025) (0.024) (0.025)
Observations 3466 3466 3466 3466 3466 3466 3466
Mean, Any reported flood 0.543 0.543 0.543 0.543 0.543 0.543 0.543
Mean, Count of flooded pixels 0.901 3.611 22.166 3.611 3.611 3.611
Departement FE Yes Yes Yes Yes Yes Yes Yes
Flood detection buffer - 1 km 2 km 5 km 1 km 2 km 5 km

Note: Authors’ calculations based on data from the ENSA surveys and the VFM archive. The table shows the results of separate
regressions where the outcome variable is a dummy for whether any household in the community reported experiencing a flood
shock in the past 6 months during the 2020, 2023, and 2024 survey rounds. Flood incidence data from the VFM archive are
linked to the ENSA data based on community centroids, and we present results linking data from pixels at various distances
from these centroids. On average there are 23 land pixels within 1 km, 90 pixels within 2 km, and 565 pixels within 5 km. *
p < 0.1, ¥ p < 0.05, *** p < 0.01

Columns 2-7 of the table again bring in measures of the number of flooded pixels within a given
radius of the community using data from the VFM archive. We use data for the same year as each

survey, as the surveys are conducted in October-November, around the end of the flood season, and
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ask about flood shocks in the prior six months. The numbers of flooded pixels within a 1, 2, and
5 km radius are all significantly and positively associated with the probability of any flood report
(column 2-4). The magnitudes are larger than those for 2018 flooded pixels in the ECOSIT sample
and there is also less of a difference across distance bandwidths, though the point estimate for
the 1 km bandwidth remains the largest. A 100% increase in the number of flooded pixels within
1 km—again quite plausible given the mean is 0.9 pixels flooded out of 22—is associated with a
15 percentage point (28%) increase in the probability of a survey flood report, compared to a 10
percentage point increase for a 100% increase in the number of flooded pixels within 5 km.

Using the threshold of 10% of pixels within a given bandwidth with flooding detected (columns
5-7), we find that being above this threshold is associated with a 28 percentage point increase for a
1 km bandwidth, compared to 33 for a 2 km bandwidth and 37 for a 5 km bandwidth. Therefore,
as in the ECOSIT sample, flood shock reports are not more associated with more proximate flood
detection. Even if more proximate floods may be more likely to cause direct damages, an equivalent
proportional increase in detected flooding over a 5 km radius implies a much larger number of
flooded pixels and therefore more potential for both direct and indirect effects of flooding.

While Table 8 and Table 10 show that there is a strong and significant correlation between
survey flood reports and remotely-sensed flood detection there are still disagreements on flood
exposure between the two sources. In the three ENSA surveys matched to VFM data, 72 of 442
(16%) of communities with more than 10% of pixels within 1 km detected as flooded do not have
any floods reported in the household surveys, but 72% of communities with a flood report do not
have any flooded pixel within 1 km and 45% do not have any within 5 km. In the ECOSIT 4
sample, 36% of communities with more than 10% of pixels within 1 km detected as flooded in the
VFM archive in 2018 do not have any floods reported in the household surveys. Further, 42% of
communities with a household flood shock report do not have any pixels within 1 km with any
flooding detected from 2015-2018. Even within 5 km, 17% of communities with a flood report have
no pixels with any flooding detected over this period. This mismatch is not due to communities
with isolated flood reports that might be hard to detect. In fact coefficients on the counts of
pixels detected as flooded in the VFM data in different years are smaller when predicting whether
communities have at least 4 of 12 households report experiencing a flood shock, as a proxy for high
confidence in survey flood reporting. Of these 68 communities, 34% had no flooded pixels within 1
km from 2015-2018 and 13% had none within 5 km.

These disagreements emphasize challenges in predicting survey flood reports using satellite
data, but suggest that using satellite-based flood detection to identify flooded communities may
hold promise. This approach will not capture all flooded communities, but the results suggest a
satellite-based flood detection threshold could be quite accurate in identifying a subset of flooded
communities. The results show that 84% of ENSA communities and 64% of ECOSIT 4 communities
with at least 10% of pixels within 1 km detected as flooded have at least one flood report. The
accuracy does not improve if considering a 20% threshold or a wider radius in the ECOSIT 4 data
but improves slightly in the ENSA data, reaching 89% for a 20% threshold and a 5 km radius.
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Further analysis could seek to identify a threshold and distance to maximize predictive accuracy.
We test whether certain community characteristics affect the ability of the VFM flood detection
to predict survey flood reports using the ECOSIT data. Table 11 shows that there is considerable
heterogeneity. On average, doubling the count of flooded pixels detected within 1 km in 2018 (a
100%) is associated with an 8.0 percentage point increase in the probability that any household
reported a flood shock from 2015-2018 (Column 1). But this correlation is driven entirely by
communities in rural areas, with many households engaged in agriculture, and with no nearby
water. In rural areas, doubling the count of flooded pixels detected within 1 km in 2018 (a 100%)
is associated with an 13.5 percentage point increase in the probability that any household reported
a flood shock, but there is no correlation between this satellite measure and survey reports in
urban areas (Column 2). Agricultural engagement is highly correlated with rural location, so
the heterogeneity by this measure is similar to the difference by rural location (Column 3). We
find no difference in predictive power by whether more households have solid floors (Column 4).
Importantly, the correlation is not significantly larger in communities with no permanent water

pixel within 1 km (Column 5), but there is no significant correlation in communities closer to

water.
Table 11: Heterogeneity in ECOSIT 4 reported flooding prediction
(1) (2) (3) (4) (5)

Log total flooded pixels in 2018 0.080"** 0.028 0.007 0.086***  0.138™*
2018 (0.024)  (0.038)  (0.044)  (0.029)  (0.067)
Log total flooded pixels in 2018 0.107**
x Rural location (0.053)
Log total flooded pixels in 2018 0.109**
x >50% of HHs engaged in agriculture (0.053)
Log total flooded pixels in 2018 -0.027
x >1/3 of HHs have a cement/tile floor (0.061)
Log total flooded pixels in 2018 -0.075
X Any permanent water pixel within 1 km (0.073)
Observations 625 601 608 614 594

Note: Authors’ calculations based on data from the ECOSIT 4 surveys and the VFM archive. The table shows the results of
separate regressions where the outcome variable is a dummy for whether any household in the community reported experiencing
a flood shock from 2015-2018. Flood incidence data from the VEM archive are linked to the ECOSIT data based on community
centroids. We focus on flooding within 1 km in 2018 as the magnitude of the correlations in Table 8 are strongest for this
measure. * p < 0.1, ¥* p < 0.05, ¥** p < 0.01

Stronger correlations between satellite-detected floods and survey reports of flood shocks in
rural and agricultural areas may suggest that flooding is more likely to cause damages or affect
livelihoods and therefore be reported as a shock in rural and agricultural areas. It may also reflect
difficulties in detecting water in more built-up urban areas, or differences in how long inundation
persists in urban compared to rural settings. Despite the stronger correlation, overlap between

satellite and survey reports remains limited even in rural communities. Just under one-third of
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rural communities where more than 10% of surrounding pixels were detected as flooded in 2018
have no survey flood reports, and 53% of rural communities with any flood report have no pixels
detected as flooded within 1 km from 2015-2018.

The larger magnitude of the correlation between pixels detected as flooded and survey flood
reports in communities farther from water, though not significantly different from the magnitude
in areas closer to water, could have two potential explanations. First, communities closer to water
may be more adapted to flooding risk and therefore less likely to report a shock following some local
inundation. Second, some seasonal fluctuations in the extent of water near rivers may be anticipated
by households but detected as flooding by the VEM algorithm. A large number of flooded pixels
in an area farther from water is a strong predictor of flood reports: 86% of communities with at
least 10% of pixels within 1 km flooded in 2018 have a survey-reported flood shock. But even in
these areas, 26% of communities with a flood report have no flooded pixels detected within 5 km
from 2015-2018.

These results show that using flood detection in the area around a community can identify
areas where household flood shocks are very likely, but will also identify areas where households
are not affected and can miss many communities reporting flood shocks. The former type of
classification error—identifying flooding in a community with no flood report—could have three
main explanations. First, the VFM algorithm may inaccurately identify some pixels as flooded but
to either measurement issues or inaccurate water masking. Second, households affected by nearby
detected floods may not be included in the survey samples either due to random sampling or to
differential sampling probability: they may be displaced or unavailable to complete an interview.
Third, nearby flooding may not cause damages to households that result in a flood report, either
because of where the flooding occurred relative to the locations of homes, farms, or infrastructure,
or because households have taken measures to protect against flood damages. Households may also
fail to recall and report some nearby flooding. We identify high levels of population flood exposure
in many years with no major media reports of flood disasters in Chad and note that in most of
these years flooding was limited in both extent and duration. These less severe floods may therefore
be less likely to result in household flood shock reports. Overall, however, the results suggests that
flood detection is strongly predictive of flood shock reports.

Cases where the VFM data does not identify flooding in communities where flood shocks are
reported are an important challenge from the perspective of identifying a trigger for flood responses,
suggesting potentially high levels of basis risk. As we show that accuracy of flood detection in
predicting flood reports is not lower when considering a 5 km as opposed to a 1 km around a
community, larger radiuses may be preferred for determining flood response to help reduce the risk
of not identifying some flooded communities. Indeed, the share of ENSA communities with flood
reports but no detected flooding fall from 72% when using a 1 km radius to 45% with a 5 km
radius. The corresponding numbers for ECOSIT 4 communities are 42% and 17%. Sous-prefecture
or departement level flood detection may also be useful as a first pass for identifying areas where

communities are at greater risk of flood exposure.
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Two main factors could explain the cases with survey flood reports but no VFM flood detection.
The first is again measurement issues with the VFM data, as the VIIRS satellite imagery cannot
capture floods that occur under cloud cover or that occur but do not persist long enough to be
captured at the time the satellite passes overhead. Satellites also have difficulty identifying urban
flooding, as obstruction by buildings, more heterogeneous surfaces, and many flat dark surfaces such
as asphalt and building shadows make it challenging to identify flood waters. Similar challenges
constrain flood detection in areas with steep slopes and in flat barren arid areas. The second is
measurement issues with the survey data, particularly the fact that households may report as flood
shocks events that involve water-related damages but did not involve any inundation of dry land.
The estimated relationships are similar when focusing on predicting communities where at least
a third of households report flooding, indicating the mismatches are not due solely to household
misreporting.

Issues related to flood identification in the VFM algorithm could potentially be reduced with a
more sophisticated approach to flood detection. Considering deviations in detected surface water
at the same location and time of year across years could help separate flooding from seasonal water
fluctuations and reduce false flood identifications. Incorporating satellite radar data and using
machine learning tools to fill in missing data from periods and areas covered by clouds could reduce
the number of flood events that are missed. Machine learning tools could also be used to identify
what characteristics of detected flooding under what conditions can best predict flood reports.
Patel (2025)’s study of the impact of floods in Bangladesh describes an approach to remotely-
sensed flood measurement that incorporates all of these partial solutions, offering one path toward

better predicting where household flood shocks have occurred.

4 Estimating economic impacts of flooding in Chad

Recent floods in Chad have had devastating human and economic impacts, as summarized in
Table 2. Millions of people have been displaced as hundreds of thousands of homes and hectares
of cropland have been destroyed. Hundreds of individuals have been killed and more have suffered
from disease and hunger following flooding.

Exposure to flooding can affect households through multiple different channels, summarized
in Table 12. Floods cause direct damages to health, agriculture, and property, as well as causing
displacement. These direct impacts can then lead to adverse effects on health, productivity, income,
and food security. At the same time, broader community and environmental effects of floods such
as water pollution, land degradation, infrastructure damages, and disrupted trade can compound
negative effects on households.

A large economics literature has studied the household-level impacts of flood exposure using
survey data in developing countries, part of a much larger literature estimating aggregate impacts
of flooding on economic outcomes. Studies find that flooding decreases household food security

(Devereux, 2007; Reed et al., 2022), worsens health outcomes (Carias et al., 2022; Djoumessi Tiague,
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Table 12: Channels of household flood impacts

Direct damages ‘ Indirect effects ‘ Environmental effects
Health (drowning, injury) | Decreased health (i.e., water-borne illnesses) | Unsanitary water
Agricultural damages Decreased agricultural productivity Land degradation

Property damages Decreased productivity and income Infrastructure damages
Displacement Increased debt, food insecurity Higher prices, disrupted trade

2023; Sajid & Bevis, 2021), and generally increases poverty and decreases well-being (Baez et al.,
2020; Freudenreich & Kebede, 2022; Stein & Weisser, 2022). In agricultural areas, flooding has
been shown to reduce crop production (Banerjee, 2010; Bangalore & McDermott, 2023; Djoumessi
Tiague, 2023). Efforts to cope with flood shocks often include temporary migration and short-term
wage labor (Akter, 2021; J. J. Chen et al., 2017; Gray & Mueller, 2012; Maystadt et al., 2016;
Mueller & Quisumbing, 2011; Vitellozzi & Giannelli, 2023). Much of this literature has focused on
floods in Asian countries, and there have been no studies of the impacts of floods in Chad.

Most studies using household survey data focus on short-term effects in the period immediately
after the flood, though recent work has started exploring long-term effects. Patel (2025) finds that
past exposure to floods in Bangladesh decreases economic activity, but increases out-migration,
agricultural exit, and school enrollment, which he interprets as strategies to diversify livelihoods.
Sajid (2023) finds that flooding in a past decade in India decreases rural wealth, inhibits migration to
urban areas, and increases engagement in household agriculture, which together suggest households
are constrained to lower-productivity livelihood strategies Biscaye and Isah (2025) find that extreme
flooding in Nigeria decreases food security and farm income and increases wage employment and rice
cultivation in following years, which indicates both livelihood diversification and farm adaptation
strategies.

These studies generally apply difference-in-difference methods to identify impacts of flooding
using panel survey data, comparing changes after flood exposure in exposed areas to changes
in unexposed areas. The advantage of such an approach is that it controls for time-invariant
characteristics that might be associated with the risk of flood exposure. Flooding is measured in
a variety of ways including survey reports, administrative reports, flooding databases, and direct
detection from satellite data, and is typically defined at the community level.

In this section we use similar methods estimate household impacts of flood exposure using
ECOSIT panel survey data from Chad and measuring flood exposure at the community level using

data from the VFM archive and survey reports.

4.1 Data

The key to identifying causal impacts of flood exposure is to be able to identify areas to serve as
counterfactuals for areas exposed to a given flood event. With cross-sectional data this could be
accomplished using propensity score matching techniques based on characteristics associated with
the probability of flood exposure. But the assumption that exposure to floods in a given time

period is the only difference between two sets of communities is a strong one even after matching
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and controlling for observed factors correlated with flood risk, particularly since outcomes are only
observed once, post-flooding.

Panel data allows for a weaker assumption: communities exposed to a flood and comparison
communities may differ in their characteristics but would have been expected to change similarly
over time in the absence of flooding, conditional on some control variables. With panel data we can
control for time-invariant location characteristics that might be associated with both flood risk and
the outcomes of interest, and can also test for balance in key characteristics and outcomes prior to
the period of flood exposure.

While the Disaster in Emergencies Monitoring (DIEM) survey has been implemented twice
yearly in Chad since 2021, it is not a panel at the household level and also includes different
samples of departements in each year. The Demographic and Health Surveys (DHS) and Multiple
Indicator Cluster Surveys (MICS) have been conducted multiple times in Chad but are also not a
panel at the household level and although they are nationally-representative the publicly-available
data do not include location identifiers below the province level, meaning we cannot construct a
geographic panel with sufficient sample size. We have obtained access to data with community
coordinates for the Enquéte Nationale de Sécurité Alimentaire (ENSA), surveys from 2020-2024
from SISAAP in Chad, but this survey is cross-sectional and different communities are sampled in
each year meaning we cannot construct a household- or even community-level panel.'”

To the best of our knowledge, there is only one source of panel household survey data in Chad:
the Enquéte sur les Conditions de vie des Ménages et la Pauvreté au Tchad (ECOSIT). ECOSIT
4 was conducted between 2018 and 2019 with a sample of 7,493 households is representative at the
national, province, and urban/rural levels. Then, the COVID-19 High Frequency Phone Surveys
(HFPS) were conducted in four rounds from 2020-2021 with a sample drawn from the ECOSIT
4 intended to be representative at the national and N’Djamena/other urban/rural levels. Among
2,833 households sampled for the survey, 1,748 were surveyed successfully and were contacted for
each rounds of the HFPS.?° Finally, ECOSIT 5 was conducted in 2022 with a sample of 7,532
households of which 5,761 were also surveyed in ECOSIT 4. Across all survey rounds, 6,223
households from ECOSIT 4 are surveyed at least twice.?! Of these, 4,475 are observed only in
ECOSIT 4 and ECOSIT 5 while 1,748 are also observed at least once in the HFPS.

The ECOSIT surveys include data on household and community characteristics which we can
use to test for baseline balance between flooded and non-flooded communities. The data also
include modules on outcomes such as livelihood activities, assets, food insecurity, and subjective
well-being which could be affected by flood exposure. Importantly, the survey also asks about

household shocks, including the flood reports presented in Figure 11.

19The ENSA data could instead be used to implement a stacked cross-sectional event study research design.

20 Although just 23% of ECOSIT 4 households are included in the HFPS, 519 out of 625 communities are represented,
which is in line with the HFPS sampling approach at the household rather than community level. Figure A24 shows
no clear patterns in which communities are represented, though the share of ECOSIT 4 households included in the
HFPS appears to be larger in more urban communities.

2'Households in communities exposed to flooding after ECOSIT 4 are not significantly less likely to be surveyed in
a later round.
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Table A5 presents baseline characteristics of households in the ECOSIT panel. Sample house-
holds are split between urban (45%) and rural (55%) communities and have 5.6 members on average.
Three-quarters live in a dwelling that they own, mostly with non-durable roof materials (56%) and
earthen floors (88%). Access to electricity (16%) and toilets or latrines (29%) is limited, and 29% of
households have annual per capita consumption below the national poverty line. Household heads
are primarily male (77%) and Muslim (64%). Less than half are literate (47%) and just 33% have
completed at least primary schooling. Households report having experienced a variety of shocks
over the previous three years. Shocks to household members including severe illness, death, and di-
vorce are most common (51%), followed by shocks to income sources of work outside of agricultural
shocks (22%). Environmental and agricultural shocks are less common; 10% of households report
any flood, 19% report any drought, and 21% report any other agricultural shocks. Over two-thirds
of households are engaged in any agricultural activity including raising livestock (71%), more than
are engaged in any non-farm household enterprise (45%). The survey respondent was working in
some activity in the last seven days in 72% of households. Households commonly receive transfers
from family or friends (24%) and many report experiencing some forms of food insecurity. In terms
of how they perceive their own well-being, 30% of households see themselves as worse off than their

neighbors (as opposed to equal or better off) and 79% consider themselves poor or very poor.

4.1.1 Flood exposure definitions

To conduct our analysis of the impacts of flood exposure on household outcomes, we match commu-
nity locations with flooding incidence data from the VFM archive as described in Subsection 3.3.
We focus on flood realizations in 2019 and 2020, while controlling for flooding exposure in previous
years as reported in the survey and detected in the VFM archive. ECOSIT 4 was completed in
April 2019, while the four rounds of the HFPS were conducted in June 2020, late July-August
2020, January-February 2021, and March-April 2021, and ECOSIT 5 was conducted in 2022. The
main flooding season in Chad is typically July-October (coinciding with the rainy season from
June-September), so any floods identified in 2019 would be after the ECOSIT 4 baseline and before
the HFPS, while floods in 2020 would be in between rounds of the HFPS. Based on the results in
Table 8 showing a greater correlation between ECOSIT flood reports and flood detection within 1
km, we define communities as exposed to flooding in 2019-2020 if at least 1 pixel within 1 km of
the community centroid was flooded during this period. We then define treatment timing based on
the first year a community was exposed between 2019-2020. The results are similar with a more
restrictive treatment definition of at least 20% of pixels within 1 km identified as flooded during
one of these years.

As an alternative flood treatment variable, we also consider household flooding reports for
the 2019-2022 period collected during ECOSIT 5. Figure A19 maps the share of households by
community reporting a flood shock in both ECOSIT 4 and 5. Since the recall period covers three
years, we cannot know when exactly the flooding took place. For analyses using this flooding
definition we therefore drop the HFPS sample and retain only the ECOSIT 4 (pre-flooding) and
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ECOSIT 5 (post-flooding) samples.

Figure 17 maps panel community locations colored by their exposure to flooding under each
treatment definition. In line with evidence of widespread flooding in both 2019 and 2020 from
the ENSA surveys and VFM data, the VFM-based flood definition results in 38% of communities
(234 of 616) categorized as exposed to flooding in 2019-2020, widely spread across the country.
Most of these communities were first exposed in 2019, with just 41 exposed in 2020 but not 2019.
Major floods also occurred across much of the country in 2021 and especially in 2022. As a result,
the share of communities categorized as exposed to flooding using survey reports for the period
2019-2022 is larger, at 48%, also widely spread across the country including in several departements
with no flooding identified in the VFM 2019-2020 data.

Figure 17: ECOSIT panel community flood exposure by definition
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Note: Authors’ calculations based on data from ECOSIT 4 and 5 and the VFM archive. Community flood exposure is based
being within at least 1 km of a pixel detected as flooded at any point in the 2019 or 2020 for the VFM definition, and based on
any household reporting a flood shock over the period 2019-2022 for the flood report definition.

The figure highlights that different communities are identified as exposed to flooding under the
two definitions, consistent with significant but limited correlations between VFM flood detection
and ECOSIT 4 flood reports discussed in Subsection 3.3, but also with differences in the periods
considered. Out of 616 communities, 235 are not identified as flooded by either definition and 146
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are identified as flooded by both, but of the remaining 235 (38%), 147 are identified as flooded only
according to ECOSIT 5 reports and 88 only according to VFM flood detection. The communities
identified only according to ECOSIT 5 reports likely represented exposure in 2021 and 2022, major
years of flooding in Chad not captured in the VFM archive. The communities identified only
according to the VFM archive are not surprising given the results in Table 8 showing recency bias
in survey flood reports, as households may not accurately have recalled their exposure in 2019
and 2020 when surveyed in 2022, especially given the widespread flooding in 2022. An important
implication is that the analysis of the impact of flood exposure on household outcomes is therefore
identified off of different sets of communities according to each definition, and represents the impacts

of different flood events.

4.2 Empirical approach

We conduct a difference-in-differences analysis to identify the impact of community flood exposure

on household outcomes. Regressions take the form:
Yiert == o+ BFlood. x Post; + i + Vet + AXicrt + €iert (1)

where outcome Y varies across households ¢, communities ¢, provinces r, and rounds t. Post is
an indicator for being observed after the first flood event. For the VFM definition, this is 2019 or
2020, and for the flood report definition, this is ECOSIT 5 only. Flood is an indicator for the flood
exposure treatment: having ever been exposed during the relevant period. This is an intent to
treat analysis as flood exposure is defined at the community level based on proximity to detected
flooding events and therefore not all households in the treatment group will have been directly
affected by flooding. This may bias estimated effects downward but avoids concern about selection
in which households are exposed and will capture both direct effects of household flood damages
as well as any indirect impacts from proximity to flooding. We cluster standard errors at the level
of the community of residence in ECOSIT 4 since this is the level at which the flooding treatment
is assigned.

As the HFPS was implemented as a short phone survey with few modules each round, we are
restricted in the set of panel outcomes we can study. We focus on a subset of outcomes tracked
across all survey rounds. These include whether the household is engaged in agriculture and non-
farm household enterprise, whether the survey respondent did any form of work activity in the
7 days before the survey, a normalized food insecurity index composed of self-reports of different
forms of food insecurity, household perceptions of absolute and relative well-being, and an indicator
for whether the household reported experiencing any non-flood shock. We note that the timeframe
for some of these questions differs between ECOSIT 4/5 and the HFPS, with the food security
questions in particular asking about the past 12 months in ECOSIT 4 and 5 compared to the last
30 days in the HFPS, as those surveys were more frequent. As these differences are common across
all households they should be captured by the round fixed effects.
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The main results we present estimate Equation 1 using two-way fixed effects (TWFE). We
include household fixed effects (u) to control for time-invariant household characteristics which
might affect outcomes and flood exposure, and province-by-year fixed effects () to control for
common changes over time across broad geographic areas. Notably, this will account for local
differences in the effects of the COVID-19 crisis which began after ECOSIT 4 and before the HFPS
survey rounds. X are time-varying controls at the community level which might be correlated
with both flood exposure and the outcomes.

Because there are multiple flood exposure events in the VFM definition, we also estimate Equa-
tion 1 using methods from the modern difference-in-differences literature that account for stag-
gered treatment timing (De Chaisemartin and d’Haultfoeuille, 2023). In particular, we apply the
Borusyak et al. (2024) and Callaway and Sant’Anna (2021) and estimators. These methods apply
a weighted approach to handle staggered timing and treatment effect heterogeneity which may
lead to more accurate pre-trend estimates, though each method calculates pre-trends differently.
We include the same fixed effects, controls, and clustering as in the TWFE estimators when using
these alternative estimators, and use them to compare both average treatment effects and changes
in treatment effects over time. In general, average estimated treatment effects are similar across
methods. We apply only the TWFE estimator when defining flood exposure based on survey reports
as with this definition we cannot identify specific treatment timing and for all exposed households

the treatment occurred between when they were surveyed in ECOSIT rounds 4 and 5.

4.2.1 Identifying causal impacts of flood exposure

The effects of experiencing flooding for all estimators are identified using variation within households
over time across communities with similar observable characteristics that were and were not exposed
to flooding within regions and survey rounds. The key assumption for this empirical strategy
to identify causal effects of flood exposure is that, conditional on control variables, outcomes in
communities exposed to flooding would have evolved in the same way as unexposed communities
had it not been for the flood shock. This would be the case in expectation if flood exposure were
randomly assigned to communities, but while flooding realizations have an exogenous or quasi-
random component linked to variation in weather patterns, flood risk is not distributed randomly
over space as discussed in Subsection 2.1. In other words, flood realizations have an endogenous
component which must be accounted for in the analysis.

To do this, we follow Borusyak and Hull (2023)’s method for dealing with non-random exposure
to exogenous shocks. In short, we separate out the endogenous component of flood exposure by
estimating the probability that a community was exposed to a flood during the relevant time period
under each definition, and controlling for differences in outcomes by flood exposure probability
in each round. This approach is similar conceptually to combining difference-in-differences with
matching on covariates (Ham and Miratrix, 2024; Stuart et al., 2014). Including these exposure
probability by round controls in the regression models means that effects of flood exposure are

identified by comparing communities in the same province with the same exposure probability but
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different exposure realizations, therefore isolating impacts of the weather-driven exogenous flood
shock component. Exposure probabilities are estimated in a machine learning framework using lasso
regression to identify relevant predictors from among annual VFM flood detection measures in each
community together with ECOSIT 4 flood reports and the community characteristics included in
Table 8, and then including these in a logit model to predict flood exposure probability according
to both the VFM and ECOSIT 5 reports. We then only retain communities within the range of
common support of estimated probabilities among exposed and non-exposed communities. We find
that controlling for the estimated probability of flood exposure fully accounts for the relationship
between exposure status and historical VFM-detected annual exposure from 2012-2018: we cannot
reject that there is not relationship between past flood detection and either flood exposure treatment
definition we use after controlling for exposure probability (Table A6, Table A7).

While controlling for flood exposure probability increases the plausibility that communities
would have evolved similarly in the absence of any flooding, this assumption is not empirically
testable. Still, one suggestive test is to analyze balance in baseline characteristics of households
during ECOSIT 4 by community flood exposure status. We test for balance on a variety of household
and household head characteristics, on reports of shock exposure, and on measures of livelihood
activities and household well-being. We find significant differences in baseline characteristics of
households in communities exposed to either VFM-detected floods in 2019-2020 or household-
reported floods in 2019-2022 (Table A8, Table A9), consistent with Table 8 and Table 5 showing that
a variety of community and household characteristics are associated with ECOSIT flood reports.
However, these differences disappear after controlling for the estimated probability of flooding, and
we cannot reject the null that all of the characteristics we consider together explain no significant
variation in flood exposure conditional on this probability.?? Balance in baseline characteristics
is not necessary to identify causal impacts of flooding in a difference-in-differences framework but
showing strong baseline balance suggests that the assumption of parallel trends in outcomes in the

absence of flooding seems plausible.

4.3 Results

Table 13 presents the results of two-way fixed effects analyses of the impacts of flooding defined
based on VEM detection of flooded pixels within 1 km (column 1) and reported recall of flood
shocks at the time of the ECOSIT 5 surveys (column 2). We note again that in addition to
reflecting different measures of flood exposure, the two measures also capture different flood events.
The flooded pixel measure only considers flood exposure in 2019 or 2020, while the flood report
measure considers any exposure from 2019-2022.

Under both definitions there is no average effect of community flood exposure after the ECOSIT
4 round on whether the survey respondent is engaged in any work activity at the time of later sur-
veys, respondent perceptions of household well-being, or household food insecurity. We emphasize

that these are intent to treat estimates averaging over all households in affected communities, which

22The F-test p values are p = 0.250 for the VFM-based definition and p = 0.156 for the report-based definition.
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are likely to be attenuated toward zero if households not directly harmed by local flooding do not
experience any adverse effects. This is important in a context where just 21% of households in
communities with any report of a flood shock during ECOSIT 5 reported such a shock, on average.
Impacts on households directly experiencing the flood shock may be larger than the average effects
at the community level that we estimate. For example, the point estimates for the food insecurity
index are large but not statistically significant, and may reflect large insecurity effects for directly
affected households and null effects for others in the same community. We do not estimate these
direct “treatment on the treated” effects, first because we do not know which households were
specifically affected by the 2019-2020 floods under the VFM definition, and second because direct
flooding exposure is correlated with many household characteristics likely to affect levels and trends

in the outcomes of interest (Table 5).

Table 13: Average impacts of community flood exposure

(1) (2)
Any flooded pixel Any flood report

(SE) (SE)
Respondent did any work in last 7 -0.05 -0.01
days (0.03) (0.03)
Any HH non-farm enterprise 0.07* 0.04

(0.04) (0.03)
Any HH crop or livestock activity -0.00 0.04***

(0.02) (0.01)
HH believes is is worse off than -0.03 -0.03
neighbors (0.03) (0.02)
HH believes it is poor or very 0.02 0.01
poor (0.02) (0.02)
Normalized HH food insecurity 0.09 0.03
index (0.07) (0.05)
Household reported a non-flood -0.06 0.10***
shock (0.04) (0.03)

Note: Authors’ calculations based on data from the ECOSIT surveys and VFM archive. The table shows the results of separate
regressions of a particular variable (shown in the rows) on the interaction of flood exposure and a post-exposure dummy, following
Equation 1. Flood exposure in column (1) is based on VFM detection of any flooded pixel within 1 km of the community centroid
in 2019 or 2020. In column (2) it is based on any household in a community reporting a flood shock over the 2019-2022 recall
period. All specifications include household, region by round, and flood exposure probability by round fixed effects. Respondent
work in the last 7 days can include any household farm or non-farm work as well as wage employment or unpaid labor, but not
domestic work. Participation in crop or livestock activity is defined over the past agricultural season. Participation in non-farm
enterprise is defined based on any active enterprises at the time of the survey. The food insecurity index is constructed as the
sum of eight normalized variables capturing different aspects of self-reported food insecurity. Household well-being is based on
the respondent’s own perceptions. * p < 0.1, ** p < 0.05, *** p < 0.01

Despite considering only average effects of community flood exposure, we do find evidence of
significant impacts on certain outcomes, though the results differ by flooding definition. Households
in communities with nearby flooded pixels in 2019 or 2020 are 7 percentage points more likely to be
engaged in non-farm enterprise in the post-flood surveys, or a 16% increase over the mean of 43%
of households in unexposed communities. The point estimate is also positive but not statistically
significant using the reported flood definition. Households in communities with any reported flood
from 2019-2022 are 4 percentage points more likely to be engaged in household agriculture in
the post-flood surveys, which is a 6% increase over the control mean. Reported community flood
exposure also increases the probability the household reports any non-flood shock in the period after

the flooding by 10 percentage points (14%). This indicates that flooding may increase vulnerability
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to later shocks, though there is no significant effect and the point estimate is negative under the
VFM flooding definition.

Table 14 presents estimates of impacts of flood exposure over time as well as average impacts
using the Borusyak et al. (2024) estimator for the VEM-based flood definition only, as the estimates
using the survey-based definition are based on only two time periods, ECOSIT 4 and 5. Consistent
with balance in baseline characteristics, there are no significant differences by flooding status in the
period before exposure. Average effects over all post-exposure periods (at the bottom of the table)
are similar to those in Table 13; only the effect on household engagement in non-farm enterprise is
statistically significant. This effect is driven partly by large and significant increases in the period
during and immediately following flood exposure: in this case, the first two rounds of the HFPS.
Estimated effects remain positive but are not statistically significant in subsequent rounds. This
pattern indicates that engaging in non-farm enterprise work may represent a coping mechanism for
households whose livelihoods are disrupted by flooding, and that this engagement does not persist
for all affected households.

Table 14: Impacts of community flood exposure over time

1) ) ®3) (4) () (6)

Well-being Food

Respondent  Any non-farm Any HH worse than  Considers insecurity
working enterprise agriculture neighbors HH poor index
t-1 -0.07 0.06 -0.02 0.03 0.01 0.08
(0.07) (0.08) (0.03) (0.08) (0.04) (0.21)
Treatment period 0.04 0.11** 0.00 -0.07* 0.04 0.08
(0.04) (0.05) (0.02) (0.04) (0.03) (0.10)
t+1 0.02 0.11** 0.00 -0.03 -0.01 0.02
(0.04) (0.05) (0.03) (0.04) (0.03) (0.11)
t+2 0.02 0.08 0.00 -0.04 0.00 -0.02
(0.04) (0.05) (0.03) (0.04) (0.04) (0.11)
t+3 -0.04 0.08 0.01 -0.07** 0.02 0.02
(0.04) (0.05) (0.02) (0.04) (0.03) (0.08)
t+4 -0.04 0.06 0.00 -0.03 0.03 0.06
(0.05) (0.06) (0.03) (0.04) (0.03) (0.09)
Observations 14267 14267 14267 13478 14171 14267
Average effect -0.01 0.08 0.00 -0.05 0.02 0.03
(Standard error) 0.03 0.04 0.02 0.03 0.02 0.07

Note: Authors’ calculations based on data from the ECOSIT surveys and VFM archive. The table shows the results of separate
regressions of a particular variable (shown in the columns) on flood exposure over time, using the Borusyak et al. (2024)
staggered difference-in-differences estimator accounting for the timing of first exposure across communities. Flood exposure in
column is based on VFM detection of any flooded pixel within 1 km of the community centroid in 2019 or 2020. All specifications
include household, region by round, and flood exposure probability by round fixed effects. See Table 13 for outcome variable
descriptions * p < 0.1, ** p < 0.05, *** p < 0.01

The only other significant average estimated effects of flood exposure in Table 14 are decreases in
the likelihood that the respondent perceives the household as being less well-off than its neighbors.
Both immediately during the period of flood exposure and a few rounds later, respondents are 7
percentage points (26%) less likely to perceive themselves as being worse off than other households

in the same community. We also find a negative point estimate for the effect of the reported flood
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treatment on this outcome (Table 13 column 2), which is close to being marginally statistically
significant (p = 0.120). One explanation is that the majority of households in flooded communities
are not directly affected (as shown in the flood shock reports), and therefore perceive themselves as

better off in subsequent periods than the minority of households that directly experience a shock.

4.3.1 Heterogeneity

The differences in effects by flooding definition Table 13 suggest that impacts of flood exposure
may depend on community characteristics, as the two flooding definitions identify different sets of
treated communities. The VFM definition is more likely to identify flooding in urban communities
than the survey-based definition, for example. Table 15 presents tests of differences in flood impacts
by rural/urban location. Although differences in effects by location are not statistically significant
under either treatment definition for almost all outcomes, we do observe several interesting results.
First, both definitions show large and significant increases in non-farm enterprise participation after
flood exposure in urban areas. This implies that opportunities to earn income from such activities

may be more restricted in rural areas making it a less attractive flood coping strategy.

Table 15: Impacts of community flood exposure by rural /urban location

(1 (2) ®3) (4)
Any flooded ~ Any flooded  Any flood  Any flood

pixel, pixel report, report
rural= 0 X rural=1 rural= 0 X rural=1
(SE) (SE) (SE) (SE)
Respondent did any work in last 7 0.00 -0.08 -0.07* 0.11*
days (0.04) (0.06) (0.04) (0.06)
Any HH non-farm enterprise 0.08** 0.03 0.08* -0.06
(0.04) (0.08) (0.04) (0.06)
Any HH crop or livestock activity -0.00 -0.00 0.03 0.03
(0.02) (0.03) (0.02) (0.03)
HH believes is is worse off than -0.03 0.03 0.00 -0.06
neighbors (0.04) (0.06) (0.03) (0.04)
HH believes it is poor or very 0.04 -0.04 0.00 0.01
poor (0.03) (0.04) (0.03) (0.04)
Normalized HH food insecurity 0.00 0.15 0.07 -0.12
index (0.10) (0.13) (0.08) (0.10)
Household reported a non-flood -0.07 0.04 0.11%** -0.03
shock (0.06) (0.08) (0.04) (0.06)

Note: Authors’ calculations based on data from the ECOSIT surveys and VFM archive. The table shows the results of separate
regressions of a particular variable on the interaction of flood exposure and the community being rural. Flood exposure in
columns 1 and 2 is based on VFM detection of any flooded pixel within 1 km of the community centroid in 2019 or 2020.
In columns 3 and 4 it is based on any household in a community reporting a flood shock over the 2019-2022 recall period.
In each set of 2 columns, the first column represents the estimated effect in urban areas, and the second column represents
the differential effect in rural areas compared to urban areas. All specifications include household, region by round, and flood
exposure probability by round fixed effects, fully interacted with rural location. See Table 13 for outcome variable descriptions
*p<0.1, ¥* p <0.05, ¥** p < 0.01

For the other outcomes, there is more disagreement between the two flood exposure definitions.
According to the survey-based definition, flood exposure tends to decrease respondent work en-
gagement in urban areas only, with significantly more positive effects in rural areas. The VFM
definition on the other hand shows reductions in work engagement in rural areas. The VFM def-

inition suggests food insecurity is more likely to increase after rural flooding with little effects in
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urban areas, which would be consistent with better market access in urban areas, but the survey-
based definition suggests the opposite. Finally, households in communities with any flood report
are significantly more likely to report experiencing another type of shock in urban areas only, while
there is not effect on shock reports in any area according to the VFM definition of exposure. These
differences imply that it is not just the locations where flood exposure is identified according to the
two definitions that drives the difference in results, but potential differences in the nature of the
flooding events that are less straightforward to understand.

We also test for heterogeneity in impacts according to several household characteristics defined
at baseline during ECOSIT 4: whether the household head is female, has a household wealth
index is above the median, reported any flood from 2015-2018, is engaged in agriculture, and is
engaged in non-farm enterprise. The results are shown in Figure A25, and in general we find limited
evidence of consistent significant differences in impacts of flood exposure by these characteristics.
Both flood exposure measures decrease the likelihood that the respondent has worked in the last 7
days among households that reported a flood shock at baseline, during the period from 2015-2018.
The difference in effects by prior flood exposure is statistically significant when considering the
survey-based flood definition.

Outside of this, the differences are either not significant or depend on the flood exposure defini-
tion. The decrease in respondent work is concentrated among less wealthy households according to
the VFM-based definition but among more wealthy households according to the survey-based defi-
nition. Increases in engagement in agricultural activity identified using the survey-based definition
are significantly larger among households with a female head and that were engaged in non-farm
enterprise at baseline, and become negative and non-significant among households that reported
any flood exposure in the period before the baseline survey. Decreases in the likelihood that the
household perceives itself as worse off than its neighbors are driven by households that reported a
flood shock before the baseline, according to the VFEM-based exposure definition, and by households
that are engaged in agriculture, according to the survey-based exposure definition. Households with
a baseline flood report have significantly smaller effects of flood exposure on the probability that
they believe they are poor or very poor according to the VFM-based definition, but significantly
larger effects according to the survey-based definition. Effects of VFM-based flood exposure on
the household food insecurity index are significantly larger and only statistically significant among

households that reported a baseline flood.

4.4 Discussion

We estimate average effects of being in a community exposed to flooding on household outcomes in
subsequent periods. Results from defining flood exposure based on VFM detection of flooded pixels
in proximity to the community in 2019-2020 show that households exposed to flooding respond
by increasing participation in non-farm enterprise activities, particularly in urban areas. These
households are not significantly worse off over time than households in unexposed communities

that had a similar estimated probability of exposure. The largest effects of flood exposure occur
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in the period when the exposure is realized and effects do not persist over the full sample period,
suggesting households are generally able to recover form the shock on average.

Results from defining flood exposure based on having any household report a flood over the
period between ECOSIT 4 and 5 show that households in exposed communities increase engagement
in agricultural production, particularly if they have a female head or were engaged in non-farm
enterprise at baseline. Community flood exposure also increases the likelihood that households
report another type of shock, suggesting decreased resilience or greater vulnerability to repeated
shocks.

Increased engagement in non-farm enterprise and household agriculture following flood exposure
may represent household efforts to diversify their livelihood strategies following a shock to their
main source of income. We do not have data on individual migration as a response to flood exposure,
but find that attrition from the ECOSIT panel is not correlated with flood exposure suggesting
limited effects on the likelihood that an entire household is persistently displaced or moves away.

An important consideration is that the results all represent intent to treat effects of community-
level flood exposure, averaging effects across households that are directly affected by damages to
their livelihood activities or possessions or harm to household members and households that are
not directly affected. If indirect impacts of community flood exposure are limited, the low share
of households reporting flood shocks in communities where at least one other household reports
such a shock means that estimated average effects will be attenuated toward zero relative to effects
of flooding on directly affected households. In this situation, positive point estimates on a food
insecurity index may suggest that directly affected households are persistently more food insecure,
but not sufficiently to overcome null effects on other community households.

Further research using the same data and identification strategy could explore this by using
community flood exposure to instrument for households reporting a flood shock. This approach
would identify local average effects of direct flood exposure, but requires the potentially strong
assumption that community-level exposure only affects households through the probability that a
household experiences direct flood-related damages. Estimated effects under this strategy would
likely be larger than those reported here.

Another extension to this work would be to consider impacts of flood exposure additional
outcome variables available only in the main ECOSIT 4 and 5 rounds but not in the HFPS such
as measures of agricultural production, incomes from different sources, and household health, as
well as individual-level labor supply data. Data from the ENSA surveys could also be particularly
valuable for testing effects on food insecurity, though the identification strategy would be different
because the ENSA data are not a panel. One approach would be to conduct a stacked cross-
sectional event study, using the Callaway and Sant’Anna (2021) estimator for example, relying
on different timing of when communities surveyed at different points in time are first exposed to
flooding. This approach would require relying on remotely-sensed flooding treatment measures, as

the surveys themselves only measure flooding in the 6 months prior to the survey.
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5 Conclusions

The results of this report may be useful for policymakers and stakeholders working on climate
change resilience, disaster response, and social protection in Chad. Understanding the geographic
distribution of flood risk and occurrences may help to target resources and efforts to support
adaptation and resilience to increasing flood risk. Both flood hazard and population exposure are
concentrated primarily along bodies of water in Chad. Pluvial flooding also poses an important risk
but it is more challenging to measure and monitor than fluvial floods, and affects a smaller share
of Chad’s population. The areas combining the highest mean days of annual flooding detected in
the VFM archive together with higher population densities are largely all concentrated in the areas
around the Logone River. These are also the areas with the highest levels of flood hazard according
to Fathom. Given limited resources, investments in flood mitigation and response may therefore
be most impactful in these areas.

Results emphasizing the recent and projected increases in flood exposure in Chad may motivate
greater attention and investment in these areas. Flood hazard is projected to increase in the coming
decades, with some areas becoming newly exposed to flood risk and others experiencing floods of
greater severity. However, population growth is the main driver of projected increases in population
flood exposure. These projected increases could potentially be reduced somewhat if efforts are made
to prevent or mitigate flood exposure. Improved flood risk communications, investment in flood
defenses, water management infrastructure, and more durable housing, and support for relocation
or protection of informal settlements in areas with high flood hazard could reduce vulnerability to
flooding even as flood hazard and the exposed population increase. Such policies would be most
important in fast-growing parts of urban areas in proximity to rivers. Although this analysis finds
limited household-level effects of recent community flood exposure using the ECOSIT surveys, the
millions of displaced persons, hundreds of deaths, and hundreds of thousands of homes destroyed
and cropland flooded in recent years suggest large potential economic and human benefits of flood
protection policies.

This study also demonstrates that many floods may occur in remote areas and go unreported by
media or government sources. Hundreds of thousands of people live in areas with floods detected by
satellite each year, and a low but non-trivial share of households report experiencing flood shocks
outside the years of major flood events in Chad. These populations are primarily concentrated
in areas with high flood hazard, suggesting a need for additional monitoring resources in remote
but high-risk areas with vulnerable populations. Vulnerability also varies within communities
suggesting a need for targeted allocation of resources. The probability that a household reports
a flood shock is correlated with factors making direct flood damages more likely: engagement in
agriculture and less durable dwelling materials. Adding considerations of flood vulnerability to
measures of exposure may help make investments more efficient and effective.

Finally, differences in community flood detection using satellite and survey data highlight chal-
lenges in using remote sensing alone to identify flood incidence. Flood detection in the area around

a community can identify areas where household flood shocks are very likely, but will also identify
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areas where households are not affected and can miss many communities reporting flood shocks.
This makes rapidly responding to flood events challenging and may result in an inefficient allocation
of resources. Flood detection algorithms can mistakenly identify ‘loods’ in communities with no
flood report, but may also correctly identify flooding that does not harm households if the flooding
is anticipated or not severe or if households are otherwise protected. More specific measures of
deviation in the presence of surface water relative to the same place at the same time of year can
reduce potential false positives for flood detection.

We show that communities with flooding detected in close proximity are very likely to have
households reporting flood shocks. Additional work could consider whether particular thresholds
for levels of detected flooding, as well as particular distances around communities, lead to more
accurate identification of communities with reported floods. A machine learning approach could
consider this prediction problem systematically and allow for different thresholds and distances
based on community characteristics such as rural location, distance from a river, and so on.

Failing to detect flooding in communities where households report flood shocks may be more
concerning, as this would imply that these areas are less likely to receive relief. This situation
also creates greater basis risk from the perspective of a threshold-based flood response policy using
remotely-detected flooding. We find that the share of communities with a flood report but no
detected flooding in proximity falls as we increase the area around a community in which flood
detection is considered. Further work could analyze how basis risk changes with the scale of the
geography considered. The tradeoff of increasing the geographic scale of flood detection is that the
share of communities identified as potentially exposed with actual flood reports will fall.

Constraints in what types of flood events different types of satellite data can capture mean that
some flooding will always be missed, though this can potentially be reduced by combining results
from multiple satellites and algorithms. A machine learning model using multiple flood detection
inputs and trained on ‘ground truth’ data (likely survey reports) may be most effective in improving
the accuracy of flood detection. Another consideration is that inundation is not the only way that
households can be harmed by heavy precipitation, which can cause direct damage as well. Such

shocks require their own set of interventions.
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A Additional figures

Figure Al: Chad agroecological zones and population density
A) Agroecological zones

B) Population density
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Note: Panel A is from the World Food Programme. Panel B is from authors’ calculations based on data from WorldPop (2025).
We cap values at 160 people per km? to better show the distribution of population density.

Figure A2: Major rivers in Chad
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Note: Figure based on 30 m resolution data from HydroSHEDS Free Flowing Rivers Network v1 (Grill et al., 2019), showing
major river networks.
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Figure A3: 100-year flood depths in Chad under 2020 conditions (WRI and JRC)
A) WRI Aqueduct v2
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Note: Authors’ calculations based on data from the WRI (World Resources Institute, 2025) and JRC (Baugh et al., 2024) flood

hazard models. Both panels show the depth of inundation under 100 year floods in meters (left) and highlight areas at risk of
floods of particular depths (right).
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Figure A4: 10-year flood depths in Chad under 2020 conditions (WRI and JRC)
A) WRI Aqueduct v2
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Note: Authors’ calculations based on data from the WRI (World Resources Institute, 2025) and JRC (Baugh et al., 2024) flood
hazard models. Both panels show the depth of inundation under 10 year floods in meters (left) and highlight areas at risk of

floods of particular depths (right).
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Figure A5: Global population exposure to medium flood risk
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Note: Figure from Rentschler et al. (2022). The map shows the share of the population by administrative division exposed to
100-year floods with a depth of at least 15 cm. In aggregate, 23% of the world’s population is exposed to such floods, and 44%
of the world’s poor population exposed to such floods is located in Africa.
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Figure A6: Exposure to >10 cm 100-year flood depths under 2020 conditions (WRI)
A) Flooded area, 100s km?

B) Population exposed, 1000s
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Note: Authors’ calculations based on data from World Resources Institute (2025). Flood exposure is defined as estimated depth
of 100-year floods of at least 10 cm. Gridded population data are from Center for International Earth Science Information
Network - CIESIN - Columbia University (2018).
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Figure A7: Projected change in 100-year undefended flood depths in Chad under 2050 conditions

(Fathom)
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C) Fluvial floods (undefended), 2050 SSP2-4.5
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Note: Authors’ calculations based on data from Fathom (2022).
100 year floods in cm. The data in panels B and C are projections of changes in flood hazard under different climate change

and population growth scenarios from the IPCC Sixth Assessment Report on climate change.
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Figure A8: Projected changes in 100-year flood depths (WRI)
A) 2020 conditions B) 2050 SSP2-4.5 conditions
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Note: Authors’ calculations based on data from World Resources Institute (2025). We compare flood hazard under 2020 (left)
compared to 2050 climate conditions projected under SSP2-4.5 in 2050 (right).

Figure A9: Population exposure to floods in 2020 v. 2100

o (a) § 80
& 45°N - e TN B
a oo g ¥
5 o g % 40
- —
m
e
)
o 45°S 4 0
T T T
180°W 90°W 0’ 90°F 180°F
b (b) ' « 30
§ A5°N - e e - e
3 A\& - 7y b
2 o gt v & & 0
o] 0° 4 .7
o s
= Wy
e
« 45°S4 . =30
180°W 90" W 0’ 90°E 180°E

Note: Figure from Rogers et al. (2025). Population is per km?, and flood exposure is based on at least 10 cm of inundation for
a 100-year flood.
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Figure A10: Projected changes in population exposure percentage for >10 cm 100-year floods
(Rogers et al)

A) 2020 B) 2050 SSP2-4.5

Note: Authors’ calculations based on data from Rogers et al. (2025). The figure compares population flood exposure percentage
(relative to the total departement population) from all flood types under 2020 conditions (Panel A) compared to 2050 climate
and population conditions projected under SSP2-4.5 (Panel B). Flood exposure is based on the share of the population exposed
to 100-year floods causing at least 10 cm of inundation depth.

Figure A11: Reported population affected by major flood events since 2001
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Note: Authors’ calculations based on data from EM-DAT (Guha-Sapir et al., 2023). The dataset includes information on
disaster type, location, timing and the total number of people affected. For years with multiple flood events recorded (2006,
2007, 2008, 2009, 2010, 2020, 2021, and 2024), we take the sum of populations exposed across different events in the year. The
EM-DAT database does not record all flood events, and other sources indicate larger populations exposed to floods in certain
years.

76



Figure A12: Yearly average water flows across stations by month
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Note: Authors’ analysis based on data obtained from the Chad Direction des Ressources en Eau (DRE). The original data are
station-level monthly average water flows by year. We take the average by month across all stations in each year. Figure 9
shows averages of these values across five-year periods to better illustrate changes over time.
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Figure A13: Annual station-level average water flows for peak August-November period
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Note: Authors’ analysis based on data obtained from the Chad Direction des Ressources en Eau (DRE). The original data are
station-level monthly average water flows by year. We take the average by station for the period from August-November with
the highest typical water flows, and then average these values across five-year period to better illustrate changes over time.

Figure A14: WFP bulletin on flooding incidence in Chad as of 12 Sep 2024
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Note: Figure from WFP (2024c). Flood extent is based on satellite imagery from NOAA VIIRS and Floodscan.
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Figure A15: Estimated population affected by flooding by province, 2022 and 2024
B) 2024 (as of 24 August)
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Note: Produced by OCHA and the Government of Chad, based on data from local authorities and partners (United Nations
OCHA, 2022a, 2024a). The maps show the estimated number of people affected by flooding by province.
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Figure A16: ENSA survey reports of flood incidence, 2016-2024
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Note: Authors’ calculations based on data from the ENSA surveys. The data are from a nationally-representative sample of
rural households about flooding experienced in the 6 months prior to the survey date. Geographic identification is not available
below the admin2 level for all years, so we show the share of households reporting any flooding by departement.
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Figure A17: ENSA community shares of household flood reports, 2020-2024
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Note: Authors’ calculations based on data from the ENSA surveys. The data are from a nationally-representative sample of
rural households about flooding experienced in the 6 months prior to the survey date. Community coordinates are available
starting in 2020, so we show the share of households reporting any flooding by community.

Figure A18: DIEM survey reports of flood incidence, 2021-2024
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Note: Authors’ calculations based on data from the DIEM surveys. The surveys are representative at the level of the de-
partements selected for each survey round. Households are asked about flood experiences over the previous three months.
Geographic identification is not available below the admin2 level, so we show the share of households reporting any flooding by
departement. On all maps, 0.6+ indicates at least 60% of households surveyed in the departement reporting a flood shock.
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Figure A19: RIMA and ECOSIT survey reports of flood incidence, 2014-2022
A) 2014 (RIMA) B) 2015-2018 (ECOSIT 4) C) 2019-2022 (ECOSIT 5)
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Note: Authors’ calculations based on data from the RIMA and ECOSIT 4 surveys. Panel A shows data from RIMA based on a
nationally-representative sample of rural households about flooding experienced in the 6 months prior to the survey date in 2014.
Geographic identification is not available below the admin2 level, so we show the share of households reporting any flooding by
departement. Panels B and C shows data from ECOSIT based on a nationally-representative sample of all households about
flooding experienced in the 3 years prior to the survey date. For each community in the survey, we map the share of households
reporting any flooding, where 0.5 indicates at least 50% of households reporting a flood.
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Figure A20: Days of annual flood exposure over space by year and percentage of land area with

any flooding
2012 2013 2014 2015 2016
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Note: Authors’ calculations based on data from the VFM archive NOAA and George Mason University (2025). We aggregate
daily flood detection maps across the year, taking the sum of days in the year with any flooding detected for each pixel. Data
for 2021 and 2022 are not available.
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Figure A21: Distribution

any flooding
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Note: Authors’ calculations based on data from the VEM archive NOAA and George Mason University (2025). We aggregate
daily flood detection maps across the year, taking the sum of days in the year with any flooding detected for each pixel. Data
for 2021 and 2022 are not available.
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Figure A22: Share of departement area exposed to any flooding by year
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Figure A23: GFM (Sentinel-1) detection of flooding around Kanem province in 2024
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Note: Authors’ calculations based on data the Copernicus Emergency Management Service Global Flood Monitoring tool. The
database detects flooding using Sentinel-1 SAR data which is not affected by cloud cover but has a relatively long lag between
flyovers. Data at at 90m resolution for the area around Kanem province were extracted for the period from July 17-September
17 2024, the peak of the flooding season. Maximum flood extent indicates the highest pixel-level flood intensity value over this
period, where flood intensity is a binary value.
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Figure A24: ECOSIT 4 communities and households included in the HFPS
A) Communities represented in the
panel B) Households represented in the panel
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Note: Authors’ calculations based on data from the ECOSIT 4 and HFPS surveys. A community is considered included in the
panel if at least one household was surveyed in the HFPS.
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Figure A25: ECOSIT heterogeneity in flood exposure impacts
A) VFM-based definition
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B) Survey-based definition
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Note: Authors’ calculations based on data from the ECOSIT surveys and VFM archive. The figures show the results of separate
regressions of a particular variable on the interaction of flood exposure and various household characteristics indicated in the
legend. Each panel uses a different flood exposure definition. Each household characteristic is a binary variable and we show
the estimated impact in households where the value is 0 and where the value is 1, where the latter is the sum of the effect
where the value is 0 and the differential effect when the value is 1. All specifications include household, region by round, and
flood exposure probability by round fixed effects, fully interacted with the particular household characteristics. See Table 13
for outcome variable descriptions
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B Additional tables

Table Al: Comparison of selected flood hazard databases

Flooding Data
Database types resolution Model Notes
Public data aggregated
Coastal/Lake, to ADM2 level,
Fluvial, Separate models DEM based on
Rogers et al (2025) Pluvial 90m by flood type many public sources
Open source
available in GEE,
Coastal/Lake, focuses on
World Resources Institute Aqueduct v2 Fluvial 1km GLOFRIS large rivers
Open source
available in GEE,
focuses on
JRC Global River Flood Hazard Maps v1 Fluvial 1km LISFLOOD large rivers
Coastal/Lake, Private/paywalled,
Fluvial, Bates et al 2010, improved DEM
Fathom Pluvial 30m Neal et al 2021 (FABDEM+)
Coastal/Lake,
Fluvial, Private/paywalled,
JBA Global Resilience Pluvial 30m Unclear bare-earth Digital Terrain Model

Note: DEM means Digital Elevation Model. A review or more detailed considerations of specific flood hazard models used
in these databases is beyond the scope of this report. Baugh et al. (2024), Fathom (2022), Rogers et al. (2025), and World
Resources Institute (2025), provide more detail. There is limited public information on the methods used in the JBA Group
models.
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Table A2: Summary of main historical flooding databases

Database Source Flood detection | Years of | Spatial resolution Temporal A ccessibility Update
inputs coverage resolution fre-
quency
VIIRS Flood | NOAA, VIIRS satellite im- | 2012-present | 375 m 1/5 day com- | Publicly available | Near-
Mapping George Ma- | agery posites archive real time
(VFM), https: | son  Univer- (daily)
/ /noaa-jpss.s3. sity, Uni-
amazonaws.com,/ | versity of
index.html# Wisconsin
JPSS_Blended_
Products/
GloFAS Copernicus Sentinel-1  satellite | 2021 -1 20m 6-12 days | Publicly available | Near-
Global Flood | Emergency Synthetic  Aperture | present (each after registering in | real time
Monitoring Management Radar Sentinel-1 web portal; data may | (daily)
(GFM), https: | Service pass, varies | be accessed in portal
//global-flood. by location) or through API but
emergency. there are restrictions
copernicus.eu/ on the duration and
technical-informatipn/ geographic extent
glofas-gfm/ of data that can be
accessed at once
Global Flood | NASA, Uni- | Satellite-based 2013 - | 12 km Daily Publicly available | Near-
Monitor- versity of | precipitation present archive real time
ing System | Maryland (TRMM/GPM) (daily)
(GFMS), and hydrological

https://flood.
umd.edu/



https://noaa-jpss.s3.amazonaws.com/index.html#JPSS_Blended_Products/
https://noaa-jpss.s3.amazonaws.com/index.html#JPSS_Blended_Products/
https://noaa-jpss.s3.amazonaws.com/index.html#JPSS_Blended_Products/
https://noaa-jpss.s3.amazonaws.com/index.html#JPSS_Blended_Products/
https://noaa-jpss.s3.amazonaws.com/index.html#JPSS_Blended_Products/
https://noaa-jpss.s3.amazonaws.com/index.html#JPSS_Blended_Products/
https://global-flood.emergency.copernicus.eu/technical-information/glofas-gfm/
https://global-flood.emergency.copernicus.eu/technical-information/glofas-gfm/
https://global-flood.emergency.copernicus.eu/technical-information/glofas-gfm/
https://global-flood.emergency.copernicus.eu/technical-information/glofas-gfm/
https://global-flood.emergency.copernicus.eu/technical-information/glofas-gfm/
https://global-flood.emergency.copernicus.eu/technical-information/glofas-gfm/
https://flood.umd.edu/
https://flood.umd.edu/
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Table A2 (continued)

Database Source Flood detection | Years of | Spatial resolution Temporal Accessibility Update

inputs coverage resolution fre-
quency

Near Real- | NASA Earth- | MODIS imagery | 2011 - 2022 | 250 m 1/2/3 day | Only data from the | Near-

Time (NRT) | Data (Terra/Aqua  satel- | (legacy composites last 8 days are avail- | real time

Global Flood lites); moving toward | product); able for download | (daily)

Product, VIIRS satellite | 2021 - through the online

https://www. imagery present database. Archives

earthdata. (current) are no longer available

nasa.gov/data/ online but specific

instruments/ data may be re-

viirs/ quested.

near-real-time-datg/

nrt-global-flood-prpducts

African Flood | Princeton Combination of | 2008-present | 5 km across Africa Daily Data for the past | Near-

and Drought | Climate In- | ground water gauges, month viewable in | real time

Monitor, https: | stitute  and | satellite rainfall online interface but | (daily)

//hydrology. University of | estimates, and not downloadable.

soton.ac.uk/ Southampton | hydrological models

apps/afdm/

Automated World Food | VIIRS, MODIS, and | Unclear; Unclear, likely at | Unclear Current flood data | Near-

Disaster Anal- | Programme Sentinel-1 satellites, | post 2018 - | least 375 m viewable in online | real time

ysis and Map- Floodscan (SFED | present portable but archives | (daily)

ping (ADAM) and MFED 90m) not accessible

Floods,

https://gis.

wip.org/adam/

FloodScan, Atmospheric Multiple passive | 1998 -1 90 m Daily Interactive web inter- | Near-

https://aer. and Envi- | satellite microwave | present face is publicly avail- | real time

powerserve.net/ ronmental scanners and imagers able for viewing but | (daily)

weather-risk-mana,

floodscan-near-real

veReseytch
-t{mERNd- histori

index.html

cal-flood-mapping/

downloads only avail-

able for a fee



https://www.earthdata.nasa.gov/data/instruments/viirs/near-real-time-data/nrt-global-flood-products
https://www.earthdata.nasa.gov/data/instruments/viirs/near-real-time-data/nrt-global-flood-products
https://www.earthdata.nasa.gov/data/instruments/viirs/near-real-time-data/nrt-global-flood-products
https://www.earthdata.nasa.gov/data/instruments/viirs/near-real-time-data/nrt-global-flood-products
https://www.earthdata.nasa.gov/data/instruments/viirs/near-real-time-data/nrt-global-flood-products
https://www.earthdata.nasa.gov/data/instruments/viirs/near-real-time-data/nrt-global-flood-products
https://www.earthdata.nasa.gov/data/instruments/viirs/near-real-time-data/nrt-global-flood-products
https://hydrology.soton.ac.uk/apps/afdm/
https://hydrology.soton.ac.uk/apps/afdm/
https://hydrology.soton.ac.uk/apps/afdm/
https://hydrology.soton.ac.uk/apps/afdm/
https://gis.wfp.org/adam/
https://gis.wfp.org/adam/
https://aer.powerserve.net/weather-risk-management/floodscan-near-real-time-and-historical-flood-mapping/index.html
https://aer.powerserve.net/weather-risk-management/floodscan-near-real-time-and-historical-flood-mapping/index.html
https://aer.powerserve.net/weather-risk-management/floodscan-near-real-time-and-historical-flood-mapping/index.html
https://aer.powerserve.net/weather-risk-management/floodscan-near-real-time-and-historical-flood-mapping/index.html
https://aer.powerserve.net/weather-risk-management/floodscan-near-real-time-and-historical-flood-mapping/index.html
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Table A2 (continued)

Database Source Flood detection | Years of | Spatial resolution Temporal Accessibility Update
inputs coverage resolution fre-
quency
EM-DAT In- | Centre for Re- | Government reports, | 1900 - | Country-level report- | Event-based; Publicly available | Varies
ternational search on the | UN agencies, NGOs, | present ing (uses national ad- | provides spreadsheet download | by event
Disaster Epidemiology | insurance agencies, ministrative unit for | start/end (post-
Database, of  Disasters | research institutes, location) dates for event
https://www. (CRED) news reports individual compi-
emdat.be/ events lation);
often days
to  weeks
post-event
Twitter Global | de Bruijn et | Twitter text mining | 2014 - 2023 Country and admin- | Event based; | Publicly available | No longer
Flood Monitor, | al. (2019) in 11 languages to 1 level based on tweet | identifies spreadsheet download | updated
https://www. geolocate flood men- location aggregation dates of
globalfloodmonitor tions tweets for a
org/ given event
DesInventar United  Na- | Official government | 1970s - | Subnational; gran- | Event-based,; Publicly available | Typically
Sendai Haz- | tions Office | and local reports, | present but | ular administrative | provides country-level event | weeks to
ardous Events | for Disas- | disaster agency | varies by | units within each | start/end databases months af-
Database, ter Risk | records, news reports | country country for selected | dates for ter events
https://www. Reduction countries (not global) | individual (entered
desinventar.net/ (UNDRR) events by local
authori-

ties)



https://www.emdat.be/
https://www.emdat.be/
https://www.globalfloodmonitor.org/
https://www.globalfloodmonitor.org/
https://www.globalfloodmonitor.org/
https://www.desinventar.net/
https://www.desinventar.net/

€6

Table A2 (continued)

Database Source Flood detection | Years of | Spatial resolution Temporal Accessibility Update
inputs coverage resolution fre-
quency
Dartmouth University of | News and govern- | 1985 - 2022 Event polygons cov- | Event-based; Publicly available | Days to
Flood Ob- | Colorado, IN- | ment reports supple- ering affected areas | provides spreadsheet and | weeks
servatory STAAR, CS- | mented by remote (often whole river | start/end shapefile downloads after flood
(DFO), https:// | DMS sensing-based detec- basins or admin | dates for (depen-
floodobservatory. tion (e.g., MODIS) regions) individual dent  on
colorado.edu/ events detec-
tion &
reports);
appears
to no
longer be
updated
Global Flood | Floodbase, MODIS imagery | 2000 - 2018 250 m for flood | Event-based; Publicly available on | No longer
Database, Dartmouth (Terra/Aqua  satel- events in DFO | provides start | Google Earth Engine | updated
https:// Flood Ob- | lites) and DFO Archive date and | (GEE)
global-flood-databasservatory Archive duration  of
cloudtostreet.ai/ (DFO) flood in days

for individual

events



https://floodobservatory.colorado.edu/
https://floodobservatory.colorado.edu/
https://floodobservatory.colorado.edu/
https://global-flood-database.cloudtostreet.ai/
https://global-flood-database.cloudtostreet.ai/
https://global-flood-database.cloudtostreet.ai/

Table A3: Correlates of ECOSIT 4 community flood reports, by year

() (2) ®3) 4) (5) (6) (7) (8)

Rural location -0.132**  -0.133** -0.130** -0.131** -0.133** -0.133** -0.130"* -0.132**
(0.063) (0.063) (0.063) (0.062) (0.063) (0.063) (0.063) (0.062)
Share of HHs engaged in 0.029 0.031 0.018 0.003 0.034 0.033 0.016 0.009
agriculture (0.132) (0.132) (0.132) (0.132) (0.132) (0.133) (0.132) (0.131)
Share of HHs with cement/metal -0.065 -0.063 -0.073 -0.091 -0.061 -0.061 -0.073 -0.097
roof (0.115)  (0.115)  (0.115)  (0.115)  (0.115)  (0.115)  (0.115)  (0.115)
Share of HHs with cement/tile -0.237 -0.234 -0.225 -0.235 -0.233 -0.234 -0.229 -0.244
floor (0.154)  (0.154)  (0.154)  (0.153)  (0.154)  (0.154)  (0.154)  (0.153)
Log total flooded pixels in 0.007 0.002 0.019 0.031***
year (0.013)  (0.013)  (0.012)  (0.011)
>=10% of surrounding pixels -0.006 -0.002 0.100*  0.156™**
flooded in year (0.057)  (0.055)  (0.057) (0.052)
Observations 625 625 625 625 625 625 625 625
Year of flood detection 2015 2016 2017 2018 2015 2016 2017 2018

Note: Authors’ calculations based on data from the ECOSIT 4 surveys and the VFM archive. The table shows the results of
separate regressions where the outcome variable is a dummy for whether any household in the community reported experiencing
a flood shock from 2015-2018. Flood incidence data from the VFM archive are linked to the ECOSIT data based on community
centroids. On average there are 22 pixels within 1 km. * p < 0.1, ** p < 0.05, *** p < 0.01
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Table A4: Average estimated flood exposure 2012-2024 by department

Departement Avg total pop. exposed (1000s) Avg. share of pop. exposed
Abdi 0.55 0.003
Aboudeia 9.98 0.121
Abtouyour 2.88 0.012
Amdjarass 0.22 0.001
Assoungha 0.48 0.001
Baguirmi 11.12 0.040
Bahar Signaka 6.51 0.046
Bahr Azoum 49.75 0.201
Bahr Koh 51.75 0.122
Barh El Gazel Nord 0.00 0.000
Barh El Gazel Ouest 0.27 0.005
Barh El Gazel Sud 0.82 0.003
Barh Sara 15.22 0.051
Batha Est 16.05 0.064
Batha Ouest 10.79 0.040
Biltine 0.45 0.001
Borkou 0.00 0.000
Borkou Yala 0.00 0.000
Chari 31.64 0.191
Dababa 5.94 0.019
Dagana 13.82 0.054
Dar Tama 0.01 0.000
Djode 2.67 0.016
Djourf Al Ahmar 4.55 0.037
Fada 0.97 0.012
Fitri 25.88 0.168
Fouli 5.55 0.057
Grande Sido 3.78 0.026
Gueni 1.50 0.014
Guéra 3.35 0.013
Haraze Al Biar 22.10 0.114
Haraze Mangueigne 6.71 0.087
Kanem 0.00 0.000
Kaya 23.62 0.146
Kimiti 17.69 0.038
Kobé 0.24 0.001
Kouh Est 15.79 0.106
Kouh Ouest 2.92 0.034
La Nya Pendé 5.17 0.033
La Kabbia 42.44 0.136
La Nya 24.58 0.115
La Pendé 46.41 0.198
Lac Iro 38.98 0.159
Lac Léré 22.92 0.094
Lac Wey 26.02 0.069
Loug Chari 37.32 0.147
Mamdi 22.13 0.251
Mandoul Occidental 15.01 0.072
Mandoul Oriental 7.62 0.022
Mangalmé 2.66 0.020
Mayo Binder 0.73 0.011
Mayo Boneye 102.01 0.308
Mayo Dallah 3.33 0.007
Mayo Lemyé 24.90 0.232
Megri 0.03 0.000
Mont Illi 47.47 0.152
Monts de Lam 24.00 0.063
Mourtcha 0.00 0.000
N’Djamena 163.07 0.112
Ngourkosso 20.14 0.088
Nord Kanem 0.01 0.000
Ouara 1.29 0.002
Tandjilé Centre 21.02 0.273
Tandjilé Est 45.56 0.140
Tandjilé Ouest 76.61 0.175
Tibesti Est 0.51 0.016
Tibesti Ouest 0.04 0.001
‘Wadi Bissam 0.04 0.000
‘Wadi Hawar 1.23 0.015
‘Wayi 21.93 0.081

Note: Authors’ calculations based on data from the VEM archive NOAA and George Mason University (2025) and WorldPop
(2025). The table shows the mean total annual population (in 1000s) exposed to floods detected in the VFM data across
2012-2024 by departement, along with the mean share of departement population exposed. Note that data for 2021 and 2022
are not available in the VFM archive.
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Table A5: Baseline characteristics of ECOSIT panel households

Mean SD Min 25 50" 757" Max N

Household characteristics

Rural location 0.55 0.50 0.0 0.0 1.0 1.0 1.0 6223
Household size 5.63 3.05 1.0 4.0 5.0 7.0 40.0 6223
Household owns its dwelling 0.78 0.41 0.0 1.0 1.0 1.0 1.0 6223
Roof is cement or metal 0.44 0.50 0.0 0.0 0.0 1.0 1.0 6223
Floor is tile or cement 0.12 0.32 0.0 0.0 0.0 0.0 1.0 6223
Main source of light is electricity 0.16 0.37 0.0 0.0 0.0 0.0 1.0 6223
Household has toilet or latrine 0.29 0.45 0.0 0.0 0.0 1.0 1.0 6223
Normalized HH wealth index -0.03 099 -09 -06 -03 0.2 5.7 6223
Household is below national poverty line 0.29 0.46 0.0 0.0 0.0 1.0 1.0 6223
Household head characteristics

Household head age 43.62 14.60 15.0 32.0 41.0 54.0 106.0 6223
Household head is female 0.23 0.42 0.0 0.0 0.0 0.0 1.0 6223
Household head is Muslim 0.64 0.48 0.0 0.0 1.0 1.0 1.0 6223
Household head is literate 0.47 0.50 0.0 0.0 0.0 1.0 1.0 6223
Household head completed primary school 0.33 0.47 0.0 0.0 0.0 1.0 1.0 6223
Any 2019-2020 flooded pixel within 1 km 0.37 0.48 0.0 0.0 0.0 1.0 1.0 6223
Baseline household shock exposure

Any flood shock in 3 years before baseline 0.10 0.30 0.0 0.0 0.0 0.0 1.0 6223
Any drought shock in 3 years before baseline 0.19 0.39 0.0 0.0 0.0 0.0 1.0 6223
Any other agricultural shock in 3 years before baseline  0.21 0.41 0.0 0.0 0.0 0.0 1.0 6223
Any income/job shock in 3 years before baseline 0.22 0.41 0.0 0.0 0.0 0.0 1.0 6223
Any conflict shock in 3 years before baseline 0.09 0.29 0.0 0.0 0.0 0.0 1.0 6223
Any shock to HH member in 3 years before baseline 0.51 0.50 0.0 0.0 1.0 1.0 1.0 6223
Household activity and well-being outcomes

Any HH crop or livestock activity 0.71 0.45 0.0 0.0 1.0 1.0 1.0 6223
Any HH non-farm enterprise 0.45 0.50 0.0 0.0 0.0 1.0 1.0 6223
Respondent did any work in last 7 days 0.72 0.40 0.0 0.5 1.0 1.0 1.0 6223
Received any transfer or assistance 0.24 0.43 0.0 0.0 0.0 0.0 1.0 6223
Normalized HH food insecurity index 0.00 097 -22 -05 -01 04 5.9 6223
HH believes is is worse off than neighbors 0.30 0.46 0.0 0.0 0.0 1.0 1.0 6043
HH believes it is poor or very poor 0.79 0.41 0.0 1.0 1.0 1.0 1.0 6190

Note: Authors’ calculations based on data from the ECOSIT 4 surveys. Panel households are those that were successfully
surveyed again in either the HFPS or in ECOSIT 5. The wealth index is constructed as the sum of normalized variables
related to housing quality and household assets. The food insecurity index is constructed as the sum of eight normalized
variables capturing different aspects of self-reported food insecurity. Household poverty is based on estimated annual per capita
consumption. Household well-being is based on the respondent’s own perceptions.

96



Table A6: Balance in historical VFM-detected community flooding by 2019-2020 VFM-based ex-

posure

No flood propensity control

With flood propensity control

Non-flooded Flooded Non-flooded Flooded

HH Mean difference HH Mean difference
(D) (SE) (D) (SE)
Count of flooded pixels in 2012, 0.10 4.52%** 0.23 0.39*
1km buffer (0.82) (0.41) (1.45) (0.23)
Count of flooded pixels in 2013, 0.04 3.61%** 0.08 -0.02
1km buffer (0.32) (0.32) (0.39) (0.07)
Count of flooded pixels in 2014, 0.01 3.61%** 0.02 -0.01
1km buffer (0.10) (0.33) (0.14) (0.02)
Count of flooded pixels in 2015, 0.34 2.79%*** 0.33 -0.34
1km buffer (1.76) (0.34) (1.62) (0.25)
Count of flooded pixels in 2016, 0.17 3.01%** 0.23 -0.03
1km buffer (1.03) (0.29) (1.10) (0.19)
Count of flooded pixels in 2017, 0.08 3.45%** 0.16 0.24*
1km buffer (0.54) (0.33) (0.79) (0.15)
Count of flooded pixels in 2018, 0.25 4.51%** 0.37 -0.05
1km buffer (1.18) (0.37) (1.27) (0.20)
Observations 616 479

Test of joint significance F =29.18 F=1.70

p < 0.001 p =0.107

Note: Authors’ calculations based on data from the ECOSIT surveys and VFM archive. The table shows the results of separate
regressions of a particular variable on flood exposure. Flood exposure is based on VFM detection of any flooded pixel within
1 km of the community centroid in 2019 or 2020. We include results for the joint test of significance of all the variables in
explaining flood exposure. * p < 0.1, ** p < 0.05, *** p < 0.01

Table A7: Balance in historical VFEM-detected community flooding by 2019-2022 report-based

exposure

No flood propensity control

With flood propensity control

Non-flooded Flooded Non-flooded Flooded

HH Mean difference HH Mean difference
(SD) (SE) (D) (SE)
Count of flooded pixels in 2012, 1.13 1.43*** 1.56 -0.43
1km buffer (3.26) (0.37) (3.99) (0.32)
Count of flooded pixels in 2013, 0.81 1.27%** 1.20 -0.18
1km buffer (2.32) (0.29) (2.95) (0.24)
Count of flooded pixels in 2014, 0.72 1.38%** 1.15 -0.14
1km buffer (2.24) (0.29) (2.99) (0.25)
Count of flooded pixels in 2015, 0.89 1.08*** 1.20 -0.29
1km buffer (2.70) (0.30) (3.19) (0.27)
Count of flooded pixels in 2016, 0.81 1.05%** 1.11 -0.15
1km buffer (2.26) (0.26) (2.61) (0.21)
Count of flooded pixels in 2017, 0.70 1.45%** 1.18 -0.04
1km buffer (2.13) (0.29) (2.96) (0.23)
Count of flooded pixels in 2018, 1.05 1.91%** 1.72 -0.04
1km buffer (2.65) (0.34) (3.70) (0.28)
Observations 616 607

Test of joint significance F =871 F =0.89

p < 0.001 p=0.513

Note: Authors’ calculations based on data from the ECOSIT surveys and VFM archive. The table shows the results of separate
regressions of a particular variable on flood exposure. Flood exposure is based on any household in a community reporting a
flood shock over the 2019-2022 recall period. We include results for the joint test of significance of all the variables in explaining
flood exposure. * p < 0.1, ** p < 0.05, *** p < 0.01
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Table A8: Baseline balance by VFM-detected community flood exposure

No flood propensity control ~ With flood propensity control

Non-flooded Flooded Non-flooded Flooded
HH Mean difference HH Mean difference
(SD) (SE) (SD) (SE)
Household characteristics
Rural location 0.61 -0.15%** 0.58 0.05
(0.49) (0.04) (0.49) (0.06)
Household size 5.54 0.22%* 5.64 0.14
(2.97) (0.10) (3.07) (0.16)
Household owns its dwelling 0.82 -0.12%** 0.80 0.01
(0.38) (0.02) (0.40) (0.04)
Roof is cement or metal 0.36 0.19*** 0.40 -0.03
(0.48) (0.03) (0.49) (0.05)
Floor is tile or cement 0.08 0.10*** 0.10 -0.01
(0.28) (0.02) (0.30) (0.03)
Main source of light is electricity 0.14 0.05** 0.16 -0.04
(0.35) (0.02) (0.36) (0.04)
Household has toilet or latrine 0.26 0.09*** 0.28 -0.06
(0.44) (0.03) (0.45) (0.05)
Normalized HH wealth index -0.13 0.27*** -0.06 -0.06
(0.91) (0.06) (0.97) (0.12)
Household is below national poverty 0.31 -0.04* 0.30 0.02
line (0.46) (0.02) (0.46) (0.03)
Household head characteristics
Household head age 43.76 -0.37 43.86 0.22
(14.80) (0.43) (14.74) (0.60)
Household head is female 0.23 -0.01 0.23 -0.03
(0.42) (0.01) (0.42) (0.02)
Household head is Muslim 0.70 -0.15%** 0.69 0.02
(0.46) (0.04) (0.46) (0.06)
Household head is literate 0.44 0.09*** 0.46 -0.02
(0.50) (0.02) (0.50) (0.04)
Household head completed primary 0.27 0.14%** 0.29 0.01
school (0.44) (0.02) (0.46) (0.04)
Baseline household shock exposure
Any flood shock in 3 years before 0.08 0.07*** 0.09 -0.00
baseline (0.27) (0.01) (0.28) (0.02)
Any drought shock in 3 years before 0.20 -0.03 0.19 0.02
baseline (0.40) (0.02) (0.39) (0.03)
Any other agricultural shock in 3 0.23 -0.04** 0.21 -0.02
years before baseline (0.42) (0.02) (0.41) (0.02)
Any income/job shock in 3 years 0.20 0.04*** 0.22 0.01
before baseline (0.40) (0.02) (0.41) (0.03)
Any conflict shock in 3 years 0.10 -0.02 0.10 0.02
before baseline (0.29) (0.01) (0.30) (0.03)
Any shock to HH member in 3 years 0.49 0.04** 0.50 -0.01
before baseline (0.50) (0.02) (0.50) (0.03)
HH activity and well-being outcomes
Any HH crop or livestock activity 0.75 -0.117%%* 0.73 0.03
(0.43) (0.03) (0.45) (0.05)
Any HH non-farm enterprise 0.44 0.02 0.44 -0.06
(0.50) (0.02) (0.50) (0.04)
Respondent did any work in last 7 0.72 0.01 0.72 0.02
days (0.41) (0.02) (0.41) (0.03)
Received any transfer or assistance 0.25 -0.03* 0.25 -0.03
(0.44) (0.02) (0.43) (0.02)
Normalized HH food insecurity index -0.11 0.31%** -0.04 -0.05
(0.93) (0.06) (0.97) (0.10)
HH believes is is worse off than 0.28 0.06*** 0.29 0.02
neighbors (0.45) (0.02) (0.45) (0.03)
HH believes it is poor or very poor 0.80 -0.03** 0.80 0.02
(0.40) (0.02) (0.40) (0.02)
Observations 6018 4704
Test of joint significance F =6.69 F =118
p < 0.001 p =0.250

Note: Authors’ calculations based on data from the ECOSIT surveys and VFM archive. The table shows the results of separate
regressions of a particular variable on flood exposure. Flood exposure is based on VFM detection of any flooded pixel within 1
km of the community centroid in 2019 or 2020. See Table A5 for additional outcome variable descriptions. We include results
for the joint test of significance of all the variables in explaini§fflood exposure. * p < 0.1, ** p < 0.05, *** p < 0.01



Table A9: Baseline balance by household-reported community flood exposure

No flood propensity control ~ With flood propensity control

Non-flooded Flooded Non-flooded Flooded
HH Mean difference HH Mean difference
(SD) (SE) (SD) (SE)
Household characteristics
Rural location 0.58 -0.06 0.55 0.03
(0.49) (0.04) (0.50) (0.04)
Household size 5.57 0.12 5.62 0.01
(2.88) (0.10) (3.05) (0.11)
Household owns its dwelling 0.82 -0.08*** 0.78 -0.02
(0.38) (0.02) (0.41) (0.02)
Roof is cement or metal 0.39 0.11%** 0.44 -0.02
(0.49) (0.03) (0.50) (0.03)
Floor is tile or cement 0.10 0.04** 0.12 -0.01
(0.30) (0.02) (0.33) (0.02)
Main source of light is electricity 0.13 0.05** 0.16 0.01
(0.34) (0.02) (0.37) (0.02)
Household has toilet or latrine 0.26 0.07** 0.30 -0.01
(0.44) (0.03) (0.46) (0.03)
Normalized HH wealth index -0.11 0.19%** -0.02 -0.00
(0.90) (0.06) (0.99) (0.06)
Household is below national poverty 0.30 -0.01 0.29 0.02
line (0.46) (0.02) (0.45) (0.02)
Household head characteristics
Household head age 43.95 -0.68 43.65 -0.50
(15.01) (0.42) (14.62) (0.46)
Household head is female 0.23 0.00 0.23 0.00
(0.42) (0.01) (0.42) (0.01)
Household head is Muslim 0.70 -0.12%** 0.65 -0.06
(0.46) (0.04) (0.48) (0.04)
Household head is literate 0.44 0.07*** 0.47 0.01
(0.50) (0.02) (0.50) (0.02)
Household head completed primary 0.27 0.11%** 0.32 0.05*
school (0.44) (0.02) (0.47) (0.03)
Baseline household shock exposure
Any flood shock in 3 years before 0.08 0.05*** 0.10 -0.01
baseline (0.27) (0.01) (0.30) (0.01)
Any drought shock in 3 years before 0.21 -0.05** 0.19 -0.03
baseline (0.41) (0.02) (0.39) (0.02)
Any other agricultural shock in 3 0.23 -0.04** 0.21 -0.02
years before baseline (0.42) (0.02) (0.41) (0.02)
Any income/job shock in 3 years 0.20 0.04** 0.22 0.01
before baseline (0.40) (0.01) (0.41) (0.02)
Any conflict shock in 3 years 0.08 0.02 0.09 0.03**
before baseline (0.27) (0.01) (0.28) (0.02)
Any shock to HH member in 3 years 0.48 0.06*** 0.51 0.04**
before baseline (0.50) (0.02) (0.50) (0.02)
HH activity and well-being outcomes
Any HH crop or livestock activity 0.74 -0.06** 0.71 0.01
(0.44) (0.03) (0.45) (0.03)
Any HH non-farm enterprise 0.42 0.05** 0.45 0.01
(0.49) (0.02) (0.50) (0.02)
Respondent did any work in last 7 0.73 -0.01 0.72 0.00
days (0.40) (0.02) (0.41) (0.02)
Received any transfer or assistance 0.27 -0.04%*** 0.25 -0.04***
(0.44) (0.02) (0.43) (0.02)
Normalized HH food insecurity index -0.10 0.23*** 0.01 0.04
(0.96) (0.05) (0.98) (0.06)
HH believes is is worse off than 0.27 0.06*** 0.30 0.04**
neighbors (0.44) (0.02) (0.46) (0.02)
HH believes it is poor or very poor 0.80 -0.02 0.79 -0.00
(0.40) (0.01) (0.41) (0.02)
Observations 6018 5931
Test of joint significance F =3.05 F =128
p < 0.001 p=0.156

Note: Authors’ calculations based on data from the ECOSIT surveys and VFM archive. The table shows the results of separate
regressions of a particular variable on flood exposure. Flood exposure is based on any household in a community reporting a
flood shock over the 2019-2022 recall period. See Table A5 for additional outcome variable descriptions. We include results for
the joint test of significance of all the variables in explaining ffdd exposure. * p < 0.1, ** p < 0.05, *** p < 0.01



C Flood management stakeholders in Chad

High levels of flood risk and population exposure across the vast country of Chad present a major
challenge for flood monitoring, prevention, management, and response. Flood management in
Chad involves a diverse range of stakeholders, including governmental agencies, non-governmental
organizations (NGOs), and international actors playing different roles (Government of Chad, 2014,
2023b, 2024). We present information on a selection of key stakeholders in Chad in Table A10,
summarizing their roles and primary activities.

Governmental agencies primarily focus on policy development, disaster preparedness, infrastruc-
ture planning, and emergency response coordination (ACAPS, 2024; Government of Chad, 2022,
2023a, 2024). Flood prevention activities undertaken by government ministries in collaboration
with local authorities include the reinforcement of dikes and riverbanks along the Chari and Lo-
gone rivers, the deployment of heavy machinery for flood control infrastructure in N’Djamena, and
the strengthening of pumping stations to prevent urban flooding (Government of Chad, 2023a).
These investments and activities are helpful but will likely provide little protection against the
threat of increasingly severe 100-year floods.

Among key government stakeholders, the Ministry of Social Action, National Solidarity and
Humanitarian Affairs (MASAH)’s Direction de la Solidarité Nationale coordinates humanitarian
aid and emergency flood relief, and is the primary actor responsible for responding to most flood
events. The National Meteorology Agency (ANAM) is responsible for weather forecasting to antic-
ipate flooding risk and support early warning systems. In response to increasing flood risk, in 2022
the Strategic Committee for Flood Management and Prevention was formed by government decree.
This committee is responsible for integrating various ministerial departments, United Nations agen-
cies, international NGOs, and local disaster management actors. Its work is structured around three
specialized sub-committees focusing on flood prevention and management, humanitarian response
and post-flood recovery, and health and sanitation for affected populations (Government of Chad,
2024). However, this committee is primarily active only in case of major flood disasters, and does
not coordinate responses to most flood events.

To strengthen institutional response capacity, the government has expanded the roles of key
ministries such as MASAH, the Ministry of Land Management, Housing, and Urban Planning
(MATHU), the Ministry of Public Health, and the Ministry of Water and Energy. These min-
istries, in collaboration with local authorities and the Office of Military Engineering and Produc-
tion (OGEMIP), have undertaken various flood prevention activities, including the reinforcement
of dikes and riverbanks along the Chari and Logone rivers, the deployment of heavy machinery for
flood control infrastructure in N’Djamena, and the strengthening of pumping stations to prevent
urban flooding (Government of Chad, 2023a). MASAH remains the central government actor in
flood response.

Non-governmental organizations (NGOs) and international organizations are essential in both
immediate disaster response and long-term resilience-building (ACAPS, 2024; Government of Chad,
2023a; United Nations OCHA, 2022a, 2024a). NGOs often fill gaps where government resources
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are limited, particularly in remote or highly vulnerable areas. Their work is crucial not only
in emergency interventions but also in risk reduction strategies, capacity-building programs, and
advocating for sustainable flood management policies (IFRC, 2022, 2023, 2024). For example,
the Food and Agriculture Organization (FAQO) of the United Nations has conducted post-flood
agricultural damage assessments in the most affected provinces, namely Logone Occidental, Logone
Oriental, Mandoul, Mayo-Kebbi Est, Moyen Chari, and Tandjilé, to evaluate the long-term impact
on food security and recommend appropriate interventions since 2022s floods (FAO, 2023a, 2023b,
2023d, 2024a). The Chadian Red Cross, supported by the IFRC, plays a key role in supporting
flood response efforts across all 23 provinces (IFRC, 2022, 2023, 2024).

International and national organizations have strengthened their coordination mechanisms to
enhance disaster preparedness, emergency response, and long-term resilience-building. The United
Nations Office for the Coordination of Humanitarian Affairs (UNOCHA), the FAO, the World
Food Programme (WFP), the United Nations Children’s Fund (UNICEF), the United Nations
High Commissioner for Refugees (UNHCR), and the World Health Organization (WHO) have
played an important role in mobilizing humanitarian aid, coordinating flood response logistics, and
ensuring food security, health services, and water sanitation for affected populations (UNICEF,
2024; United Nations OCHA, 2022a, 2022b, 2024a, 2025; WFP, 2024a; WHO, 2022). In particular,
UNOCHA has enhanced data-sharing and response coordination between humanitarian actors and
government agencies (United Nations OCHA, 2022a, 2024a, 2025).

Local community organizations and civil society groups play an essential role in engaging af-
fected populations, disseminating information, and supporting response efforts at the grassroots
level. These groups often act as intermediaries between large organizations and local communities,
ensuring that aid and flood mitigation efforts are appropriately targeted.

Despite increased attention and funding and efforts to organize around flood preparedness and
response, critical vulnerabilities persist, limiting the effectiveness of flood response efforts. The
absence of a legally binding multi-sectoral contingency plan, over-reliance on external humanitar-
ian aid, and weak enforcement of urban planning policies continue to hinder long-term disaster
resilience in Chad (Government of Chad, 2024; MASSAH, 2025). Communication and technologi-
cal challenges are another constraint. For example, the April-May 2024 seasonal forecast bulletins
from ANAM had predicted above-average rainfall and rising water levels in the Chari and Logone
river basins, which ultimately resulted in widespread flooding (IRD, 2024), but there was limited
capacity to disseminate and act on these forecasts to mitigate flood risk and exposure. The General
Directorate of Water Resources (DRE) has expanded hydrological observation networks, but many
water-level monitoring stations remain non-functional, highlighting the urgent need for technolog-
ical upgrades, including automated water level sensors (Government of Chad, 2023b, 2024). There
are also challenges in identifying flood incidence locally to help target relief efforts.

Despite increased attention and funding and efforts to organize around flood preparedness and
response, critical vulnerabilities persist, limiting the effectiveness of flood response efforts. The

absence of a legally binding multi-sectoral contingency plan, over-reliance on external humanitar-
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ian aid, and weak enforcement of urban planning policies continue to hinder long-term disaster
resilience in Chad (Government of Chad, 2024; MASSAH, 2025). Communication and technologi-
cal challenges are another constraint. For example, the April-May 2024 seasonal forecast bulletins
from ANAM had predicted above-average rainfall and rising water levels in the Chari and Logone
river basins, which ultimately resulted in widespread flooding (IRD, 2024), but there was limited
capacity to disseminate and act on these forecasts to mitigate flood risk and exposure. The General
Directorate of Water Resources (DRE) has expanded hydrological observation networks, but many
water-level monitoring stations remain non-functional, highlighting the urgent need for technolog-
ical upgrades, including automated water level sensors (Government of Chad, 2023b, 2024). There
are also challenges in identifying flood incidence locally to help target relief efforts.

Infrastructure limitations compound Chad’s vulnerability to flooding (ND-GAIN, 2025). Plan-
ning and funding for flood defenses, urban water management infrastructure, river flow manage-
ment, erosion control and prevention, and durable and resilient housing across many parts of the

country are a significant challenge.
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Table A10: Main stakeholders involved in flood management

Organization

Roles / Missions

Activities / Responsibilities

Outputs

Chad Strategic Committee
for Flood Management and

Prevention

Oversees the planning, coordina-
tion, and implementation of flood-
related prevention and response ef-
forts in Chad.

Coordinates humanitarian interven-
tions, maps flood-prone areas, eval-
drafts

mobilizes re-

uates relevant legislation,
contingency plans,
sources, and develops communica-
tion strategies to enhance prepared-

ness and response.

The committee generates
flood risk maps, contingency
plans, emergency response
reports, and updates on

funding mobilization.

Chad Ministry of Social
Action, National Solidarity
and Humanitarian Affairs
(MASAH)

Coordination of flood response and
relief (Direction de la Solidarité Na-

tionale).

Deployment of emergency shelters,
food aid, and medical assistance for

flood victims.

Continuous relief activities,

especially during flood crises.

Chad Ministry of Spatial
Planning, Housing and Urban
Planning (MATHU)

Urban planning and development of

flood mitigation infrastructures.

Construction of flood control bar-

riers, risk mapping, and urban

drainage improvements.

Urban development plans,
risk mapping reports (annu-

ally or as needed).

Chad Ministry of Public
Health

Manages health-related crises and

responses during floods.

Strengthens health facilities, de-
ploys emergency medical teams,
monitors epidemiological risks, pro-

vides psychosocial support.

Epidemiological reports,
emergency health response
updates  (regularly  and

post-flood events).

Chad Ministry of Water and
Energy (MEE)

Oversees water resource manage-
ment and flood-related hydrological

monitoring.

Collects and analyzes hydrologi-
cal data, manages flood forecasting
models, oversees emergency water

resource distribution.

Issues hydrological reports
(regular updates during flood

seasons)

Chad ANAM (National Me-
teorology Agency)

Responsible for monitoring, analyz-
ing, and forecasting weather and hy-
drological conditions to anticipate
flood risks in Chad.

Collects and analyzes meteorologi-
cal data, publishes climate and hy-
drological forecasts, and alerts au-
thorities and the public about risks

related to rainfall and flooding.

Regularly publishes mete-
orological and hydrological
bulletins, including seasonal
forecasts (such as the April-
May 2022 forecasts for that
year’s floods) and post-season
analyses to assess the impact

of rainfall and water flow.
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Table A10 (continued)

Organization

Roles / Missions

Activities / Responsibilities

Outputs

Chad General Directorate of
Water Resources (DRE)

Coordinates the hydrological moni-
toring network and water data man-

agement.

Aggregates flood-related data, pro-
vides forecasts, works with hydro-

logical models.

Issues periodic reports on
river levels and water man-

agement.

Chad Provincial and Local
Authorities (Governors, Pre-

fects, Mayors)

Oversee and implement flood re-

sponse measures at the local level.

Coordinate emergency response

within provinces, support crisis

committees,  facilitate logistics

for evacuations, mobilize local
resources, and oversee disaster risk

reduction actions.

Local emergency reports, co-
ordination meetings, and cri-
sis updates (as needed during

flood events)

Chad Office of Military
Engineering and Production
(OGEMIP)

Coordinates and implements techni-
cal and infrastructural interventions
for flood prevention and manage-
ment in Chad.

Development of resettlement sites,
construction of drainage and flood
protection structures, installation
of shut-off valves, maintenance of
canals, provision of temporary shel-
ters, solar electrification, and water

supply infrastructure.

Reports on infrastructure
progress (as needed), mon-
itoring of maintenance and
operational activities (regu-
larly), post-flood intervention
assessments  (after  flood

events).

OCHA (United Nations Of-
fice for the Coordination of

Humanitarian Affairs)

Facilitates coordination between
governmental bodies and humani-

tarian organizations.

Mobilizes international funding, co-

ordinates humanitarian interven-

tions, supports needs assessments.

Humanitarian updates, fund-
ing reports, disaster response

bulletins (frequent)

FAO (Food and Agriculture

Organization)

Monitors flood impact on agricul-
ture and food security, provides
technical assistance, and supports

resilience-building efforts.

Uses satellite imagery for flood as-
sessments, supports early warning
systems, provides emergency aid to
farmers, implements food security

measures.

Produces flood monitoring re-
ports (during the rainy sea-
son), agricultural impact as-
sessments (post-flood events),
early warning bulletins (peri-
odic based on forecasts), and
livelihood/food security re-
ports (as needed in response

to crises).
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Table A10 (continued)

Organization

Roles / Missions

Activities / Responsibilities

Outputs

WFP (World Food Pro-

gramme)

Provision of emergency food assis-
tance, logistics, and nutritional sup-

port.

Rapid deployment of emergency
food supplies and logistical support

to affected populations.

Food security assessments,
distribution reports (monthly
and post-floods)

UNICEF, WHO, UNHCR

Medical assistance, child protection,

and refugee response coordination.

Health interventions, vaccination
campaigns, and emergency response

for vulnerable groups.

Regular, particularly for
health and child protection

during crises

Chadian Red Cross

Emergency response, first aid, and
humanitarian relief for disaster-

affected populations.

Emergency evacuation, first aid and
psychosocial support, distribution
of emergency shelter and essential
household items, cash assistance for
affected households, water purifica-
tion and hygiene promotion, com-
munity health interventions, disas-

ter risk reduction training.

Needs assessments, disaster
response reports (regularly
during crises), post-flood
evaluations, and operational

updates (periodic)

Institute of Research for De-
velopment (IRD) & Univer-
sity of N’Djamena (Labo-
ratory of Hydro-Geosciences

and Reservoirs)

Institute of Research for Devel-
(IRD)
N’Djamena (Laboratory of Hydro-

opment & University of

Geosciences and Reservoirs).

Develops predictive flood models,
monitors river levels, analyzes hy-
drological data, collaborates on

early warning systems.

Publishes technical and oper-
ational reports (weekly and

during flood crises).




D Measuring flooding by satellite

Earth observation satellites have been consistently collecting data on the Earth’s surface since the
1960s and hundreds of satellites are currently in orbit. Satellites with publicly-available data that
have commonly been used to detect flooding include Landsat-8, MODIS (Aqua and Terra), VIIRS,
and Sentinel-1 and -2 (see Schumann et al. (2018) for a recent review). Table A1l summarizes
information on the data collected by these satellites, along with two others less commonly used,
ALSO PALSAR and SMAP.?

Each satellite carries sensors that measure signals emitted from Earth. Optical /multispectral or
microwave sensors passively record signals. Optical sensors all high spatial and spectral detail but
are limited by clouds and sunlight. Microwave sensors penetrate clouds but have a much coarser
resolution. Active sensors, notably synthetic aperture radar (SAR), collect data by emitting energy
and measuring the backscatter. SAR works in all weather and in both day and night, but is typically
collected at lower frequency. All of the satellites listed above carry optical/MS sensors except for
Sentinel-1 which carries SAR sensors.

Both optical and radar can be used to detect the presence of water. For example, the Normalized
Difference Water Index (NDWI) based on optical data leverages differences in how surface water
reflects and absorbs different portions of the electromagnetic spectrum. This index is commonly
used as an indicator of water or moist surfaces. Algorithms for radar data leverage differences
in the backscatter for radar signals bouncing off of water relative to other features of the Earth’s
surface. Special attention must be paid in this algorithm to account for other features which could
have similar signals as water, such as cloud or terrain shadow.

The identification of surface water is key for the detection of floods using satellite data. If
water is identified in pixels where there is not typically any surface water (on average or in a given
time period), this is an indication of a potential flood event. Different flood detection algorithms
take different approaches to determining whether water detected at a particular place and time
constitutes a flood. One common method is applying a ‘permanent water mask’ which identifies all
pixels where surface water is expected, based either on geospatial representations of water bodies
or on historical patterns in satellite data. All areas with surface water outside of the permanent
water mask could be considered flooded. An alternative or additional method involves comparisons
of water cover in the same location at different points in time, with a larger variation indicating
a greater likelihood of flooding. Flood detection algorithms also make a variety of adjustments
to account for measurement issues such as dropping areas with steep slopes (based on a digital
elevation map), interpolating over time to overcome issues related to cloud cover or gaps between
satellite flyovers, and more.

Some remote sensing approaches rely on precipitation data rather than the detection of surface

water. Microwave and radar sensors can be used to estimate precipitation patterns, which can be

23 A number of other satellites are also used in flood mapping but these are the most common. Commercial satellites
such as Planetscope (Planet), WorldView (Maxar), and ICEYE offer very high resolution and high frequency data
but these data must be purchased.
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combined with hydrological models to predict flooding. The accuracy of these methods depends
on the local reliability of hydrological model inputs, which can be limited in many lower-income
countries.

Sentinel-1 SAR data is increasingly being preferred for flood mapping due to the advantages
of SAR over optical data, but the longer revisit period (6-12 days) is an important limitation.
MODIS and VIIRS satellite imagery are well-suited for large-area flood mapping due to their
frequent (near daily) revisit periods, but are constrained by their inability to see through clouds.
Sentinel-2 has the same constraint but offers higher resolution imagery, though with a longer revisit
period. The most advanced current methods for identifying flooding combine Sentinel-1 SAR data
with imagery from another satellite, often incorporating machine learning methods to leverage the
different advantages of each source, but no publicly-available flooding database uses such methods,
which are very computationally demanding.?*

Flood detection by satellite has two main advantages. First, satellite data allows for high-
frequency data collection across the world at a high spatial resolution. Second, satellite-based
measures are objective and based on a specific algorithm, meaning they are not subject to reporting
errors. But there are also several important limitations to satellite-based flood detection.

For one, the frequency of satellite data collection, covering each point on Earth every 1-16 days
for the main satellites in Table A11, still implies that fast-moving floods are likely to be missed.
This has particularly important implications for non-fluvial floods, as pluvial floodwaters flow
towards low ground and are unlikely to stay stagnant for very long except on very flat ground with
very limited soil absorption capacity and large amounts of water. Another limitation is that cloud
cover prevents optical sensors from capturing floods caused by heavy precipitation; detection of
these floods requires that inundation remains detectable until the next cloud-free data the satellite
passes overhead. Microwave and radar satellite data resolve this issues but are not available at high
temporal frequency. Finally, although the identification of floods based on algorithms using data
may be objective, it may still be biased based on how the algorithm is developed. For example,
algorithms that do not account for seasonal fluctuations in water cover may misclassify some such
fluctuations as floods and in general flood detection algorithms are very sensitive to the choice of
reference periods for ‘non-flooding’ conditions. Indeed, maps of flooding incidence for a given time
and place can vary substantially across different flood monitoring databases.

For these reasons, satellite-based sources should not be considered as definitive measures of
flooding incidence, particularly at very specific points in time and space. At a more aggregate level,
however, they are very useful in identifying and monitoring areas where floods are determined to

be very likely to be occurring.

24Patel (2025) develops such a method which also incorporates survey data from Bangladesh as a ground-truth
flood measure for tuning the flood detection algorithm.
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Table A11: Summary of main satellites used in flood detection

Satellite Source | Sensor Type Spatial Resolution | Revisit Period Spectral Swath Years of
Bands Width availability
Landsat 7 | NASA/ | Optical + In- | 15 m  (panchro- | 16 days 8 bands 185 km 1999-2022
USGS frared matic), 30 m (MS),
60 m (thermal)
Landsat 8 | NASA/ | Optical + In- | 15 m  (panchro- | 16 days 11 bands + 1 | 185 km 2013-
USGS frared matic), 30 m (MS), panchromatic
100 m (thermal)
MODIS NASA Optical + In- | 250 m (Red/NIR), | 1-2 days 36 bands 2330 km 1999- (Terra),
(Aqua and frared 500 m, 1000 m 2002- (Aqua)
Terra)
Sentinel-1 | ESA Synthetic Aper- | 10 m 6-12 days (region- | C-band SAR 250 km | 2014- (S1A),
ture Radar dependent,) (varies by | 2016-2021
(SAR) mode) (S1B)
Sentinel-2 | ESA Optical + In- | 10 m (visible/NIR), | 5 days 13 bands 290 km 2015-
frared 20m, 60m
VIIRS NASA/ | Optical + 1In- | 375 m (I bands), 750 | 1 day 22 bands 3000 km 2011- (Suomi
NOAA frared m (M bands) NPP), 2017-
(NOAA-20)
ALOS JAXA Synthetic Aper- | 10-100 m (depends | ~46 days (ALOS-1); | L-band SAR 70-350 km | 2006—2011
PALSAR ture Radar | on mode) 14 days (ALOS-2, (ALOS-
(SAR) partial access) 1), 2014-
(ALOS-2)
SMAP NASA Passive Mi- | 9-36 km (passive); | 2-3 days L-band ra- | 1000 km 2015—present
crowave Sensor 3 km (active, until diometer

2015)
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